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Forord
Denne sluttrapporten er en del av vårt bachelorprosjekt ved Fakultet for Teknologi, Kunst og

Design (TKD) på OsloMet - Storbyuniversitetet, våren 2023. Bachelorprosjektet er utført for

OneCall1, heretter også kalt oppdragsgiver. Rapporten beskriver utviklingen av en

webapplikasjon som har til hensikt å gi oppdragsgiver innsikt, statistikk og

churn-prediksjoner2 om sine kunder.

Rapporten er hovedsakelig skrevet for en leser med grunnleggende forståelse for

datateknologi, programmering og maskinlæring, men vi har prøvd å legge til rette for at en

leser med lite eller ingen kunnskaper på områdene også kan finne denne rapporten forståelig

og interessant. Vi anbefaler å lese dette dokumentet digitalt, da det inneholder interaktive

lenker til kilder og andre vedlegg som hører med rapporten. Lenkene forekommer med blå

skrift og understrek. Innholdsfortegnelsen er linket opp mot overskrifter i teksten, slik at man

kan trykke direkte til dem. Forkortelser, fremmedord og faguttrykk er beskrevet nærmere i

fotnoter. Alle vedleggene og kilder oppføres i parentes: (Appendiks X), og ligger vedlagt

under avsnittet Referanser og vedlegg. For å starte applikasjonen følger man

brukermanualen i README.md filen i prosjektmappen til selve applikasjonen (zip-filen),

eller ved å lese instruksjonene i filen howto.txt. Link til vår landingsside for prosjektet:

https://telia-bachelor.github.io/BachelorOppgave. Her finnes blant annet dokumentasjon av

Statusrapport, Prosjektskisse og Forprosjekt, samt presentasjon av oss.

Dette prosjektet har vært en spennende utfordring, og har gitt oss muligheten til å utforske og

lære mer om programvareutvikling og maskinlæring. Vi vil takke Tonje Smith-Hansen

(Application Manager) og Cato Berglie (Delivery Manager) som fulgte oss opp og la til rette

for at vi kunne gjøre bacheloroppgaven hos dem. Vi takker også Boyd Hermansen (Senior

Consultant) som har bidratt med verdifull teknisk kunnskap som senior utvikler, samt gitt oss

informasjon om oppdragsgiver sin kundebase. Generelt vil vi takke alle involverte fra

OneCall for gode innspill og ressurser vi fikk til disposisjon. Vi håper denne rapporten vil

være til inspirasjon og nytte for oppdragsgiveren som ønsker å utforske mulighetene som

finnes innenfor datateknologi og maskinlæring i telekombransjen.

God lesing!

2 Churn er engelsk for “kundefrafall”.
1 Telekomselskap heleid av Telia Company.
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Sammendrag
OneCall har et ønske om å vite mer om kundene sine, spesielt med hensyn til kundefrafall. En

web-basert applikasjon som kan vise statistikk og risikofaktorer for dette var ønskelig.

Gjennom en smidig utviklingsprosess har vi bygget en fullstack-applikasjon med et

dashboard, søk og kundeanalyse. Applikasjonen er er en MVP3 skrevet i Java med Spring

Boot som rammeverk i backend. Vi har brukt React som frontend-rammeverk. Vi fikk to

tabeller fra oppdragsgiver; den ene med CDR4 data, den andre med kundeinformasjon. Denne

dataen har blitt bearbeidet og trent med Random Forest Regression, en ‘supervised learning’

algoritme, til en maskinlæringsmodell som har som mål å forutsi kundefrafall-risiko. Vi har

evaluert modellen vår og kan si at den fikk en god prediksjons score. Denne modellen har

blitt tilgjengeliggjort gjennom Python-rammeverket Flask.

4 CDR = “Call Detail Records”, som viser til mobildata-forbruk og mobilaktivitet.
3 “Minimum Viable Product”
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Introduksjon

OneCall er et telekomselskap eid av Telia Company, men opererer som en separat enhet.

OneCall ønsker å forstå kundene sine bedre slik at de kan skreddersy tjenester og identifisere

risikofaktorer for kundefrafall. Årsakene til churn generelt er mangefasettert og uklar, og

oppdragsgiver er spesielt opptatt av å motvirke dette som utgjør et av deres større

økonomiske tap. Derfor ønsket de at vi skulle lage en løsning som hjalp dem til å få bedre

oversikt over deres kunder, kundenes forbruk og forhåpentligvis peke mot årsaker til churn.

Vår oppgave ble å lage en applikasjon som skulle visualisere og presentere data om

forbruket, da dagens analytiske team mener at en av nøkkelfaktorene ligger der. Etter flere

møter og samtaler med oppdragsgiver utarbeidet vi en problemstilling rettet mot våre

målsettinger;

“Hvordan konstruere en løsning som gir OneCall mer kundeinnsikt, spesielt med

hensyn til churn risiko?”

1. Styringsdokumentasjon
1.1. Planlegging og metode

Bachelorprosjektet startet offisielt i januar 2023. Vi begynte med å planlegge

gjennomføringen og lagde en overordnet fremdriftsplan. Gjennom de første møtene med

oppdragsgiver samarbeidet vi om å identifisere de grunnleggende kravene til applikasjonen. I

løpet av den første fasen definerte vi mål og milepæler, og fastsatte kravspesifikasjoner. Disse

vil vi presentere nærmere i kapittel 1.2. Kravspesifikasjon. Deretter utviklet vi en

prosjektplan som inkluderte milepælene, tidsrammer og ressursbehov. Planleggingen i starten

av prosjektet la grunnlag for en god gjennomføring. Første gang vi ble introdusert for

prosjektet var i august 2022, og allerede da ble det opprettet en prosjektdagbok (Appendiks

1). Den brukte vi for å loggføre all aktivitet fra start, møter med oppdragsgiver, gruppemøter,

innleveringsfrister og annen informasjon vi tenkte kunne være relevant for senere. Da vi

startet med utviklingen av selve applikasjonen i januar, gikk vi over til loggføring i Atlassian

sine styringsverktøy som Jira og Confluence. Jira gav oss god oversikt på hva som måtte

gjøres, når ting måtte være ferdig, og hvilke ressurser som trengs hvor. Med Jira kunne vi

holde orden på fremdriften i Sprinter5 og ha oversikt over hvem som gjorde hva til enhver tid,

5 Et tidsrom på ca 4 uker der gruppen skal fullføre en avtalt mengde av arbeidet som er på “tavlen”.
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og samtidig se hvor langt vi var kommet på hver oppgave. Dette gjorde det enkelt å reflektere

over hva som fungerte godt og hva som kunne forbedres til neste Sprint. Ved å definere mål

og milepæler tidlig i prosessen, og følge opp med jevnlige møter, ble det lettere å passe på at

vi var på rett spor. Vi hadde jevnlige møter med oppdragsgiver for å sjekke om de var

fornøyd med fremdriften og det vi hadde gjort. Erfaringer vi har tatt med oss fra dette er at, i

tillegg til tekniske ferdigheter kreves det også samarbeid, organisering og planlegging for å

gjennomføre et vellykket prosjekt.

Vi samlet oppgavene inn i 4 milepæler. Hver av milepælene representerte en fremgang mot

ferdig resultat; å utvikle en fungerende webapplikasjon som kan presentere data om kunder

og churn-risiko. Å bruke milepæler gjør det lettere å holde oversikt over fremdriften i et

prosjekt. Ved å dele opp et større mål inn i flere mindre delmål vil det bli mer oversiktlig og

overkommelig å nå det endelige målet (Rolstadås, 2019). Vi satte målene i rekkefølge etter

hva vi prioriterte og hva vi mente var viktigst å få gjennomført for å kunne ha en fungerende

applikasjon. Som man kan se på figur 1.1, er det fjerde målet “grået ut”. Dette fordi vi innså

når vi nærmet oss siste halvdel av prosjektet at det ville vært for ressurskrevende og tatt mer

tid enn vi hadde til disposisjon. Vi ville heller prioritere de andre milepælene slik at de ble

ordentlig gjennomført.

Figur 1.1 - En illustrasjon på Milepæler.

1.1.1. Scrum

Vi valgte Scrum som arbeidsmetodikk for prosjektet fordi det er en anerkjent og effektiv

metode for smidig utvikling av prosjekter som legger vekt på samarbeid, tilpasning,

fleksibilitet og iterativ metode (Schwaber, 1997, s. 117-134). Scrum-metoden anerkjenner at

endringer vil oppstå i løpet av prosjektet og legger til rette for justeringer og tilpasninger i
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prosessen. Vi delte prosjektet inn i 7 Sprinter på ca. 3 uker per Sprint, som er en typisk

inndeling for et Scrum-prosjekt (Lindsjørn, 2021).

Figur 1.2 - Sprinter i utviklingsprosess

Vi delte prosjektet inn i ulike Epics6 etter hvilke oppgaver som skulle utføres (Beerbaum,

2023, s.9 - figur 1.3). Vi delte Epics inn i tema etter hvilken del av prosjektet det hørte til.

Dette gav oss en bedre oversikt med tanke på å visualisere prosessen på en måte som gav

mest mening for vår egen del (figur 1.3).

Figur 1.3 - Epics i Jira

Vi delte gruppen inn i et typisk Scrum-team. Dette mente vi var den beste løsningen for at

arbeidet skulle bli jevnt fordelt mellom gruppemedlemmene, men samtidig få en god

arbeidsflyt uten at arbeidsoppgavene ble for oppstykket. Vi valgte ut en Scrum Master7 som

også ble Product Owner8. Denne studenten skulle sørge for at Scrum-prosessen ble fulgt og

holde styr på oppgavene i Sprint og Backlog9. Samtidig skulle denne personen ha ansvar for

kommunikasjon med oppdragsgiver og holde dem oppdatert i prosessen. I utgangspunktet er

9 Liste med oppgaver som skal gjennomføres, men som ikke er oppført på tavlen / i Sprinten.
8 Prosjektleder / Ansvarlig for sluttresultat.
7 Ansvaret for prosjektstyringen.
6 En samling relaterte oppgaver knyttet til en brukerhistorie eller tema.
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Scrum Master og Product Owner to egne roller som besettes av forskjellige personer, men

fordi gruppen var liten fikk en person begge rollene. Et annet gruppemedlem fikk ansvaret for

frontend og sørge for at brukergrensesnittet var brukervennlig og i tråd med OneCall sitt

designsystem. En tredje fikk ansvar for backend- og API10-laget og hvordan logikken bak

applikasjonen skulle være. En fjerde fikk ansvar for testing og sikkerhet og sørge for kvalitet

og sikker bruk av applikasjonen. Sistemann hadde ansvar for maskinlærings-delen og for å

implementere en brukbar modell som skulle gi presise prediksjoner. Vi fordelte oppgavene

etter preferanser, men også etter behov og individuelle styrker. Selv om vi fordelte

ansvarsområder var vi opptatt av å samarbeide om oppgaver, gjerne i grupper på 2-3

teammedlemmer. Alle i gruppen hadde deltidsjobber og andre fag i tillegg til

bacheloroppgaven. Så vi fikk ikke mulighet til å jobbe med prosjektet like mye som et

Scrum-team vanligvis gjør. Vi gjorde vårt beste for å møtes minst to ganger i uken for å jobbe

sammen og ha stand-ups11. Dette med hensikt å følge opp hverandres arbeid og være

oppdatert på arbeidsstatus. Etter hver Sprint hadde vi et lengre møte med Retrospektiv

(Appendiks 2) for å få en mer helhetlig oversikt over progresjon, evaluere arbeidet og

reflektere over hvordan vi synes prosessen hadde gått så langt. En av fordelene med Jira er at

man kan koble den til ulike delingsplattformer som GitHub12 og Slack13. Med disse

delingsplattformene kunne vi knytte Jira-oppgavene opp mot branches14. Slack brukte vi for å

kommunisere og GitHub for å administrere og samarbeide på ulike deler av prosjektet. Ved

hjelp av funksjoner som “branching”, “merging”15 og "pull requests”16 kunne vi samarbeide i

en felles kodebase på separate områder på en organisert måte uten å forstyrre hverandres

arbeid eller endringer.

16 Be om tillatelse før man kobler sammen den individuelle grenen inn i “hoved-koden” igjen.
15 Å slå sammen den individuelle grenen inn i “hoved-koden” igjen.
14 En del av “hoved-koden” i en egen gren for å jobbe med den individuelt.
13 Se avsnitt “1.3. Valgt teknologi” for nærmere beskrivelse.
12 Forklares i avsnittet om teknologi.
11 Kort dagsmøte med oppdatering på hva som er gjort, gjøres og må gjøres til neste dagsmøte.
10 Application Programming Interface, utveksling av data mellom ulike teknologier.
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Figur 1.4 - Et klipp fra Scrum Board i Jira

Jira har innebygde funksjoner som er tilpasset Scrum-metodikken og har en digital visuell

Scrum Board, Backlog og Roadmap. I Scrum har man et board (tavle) der alle oppgaver som

er i den aktuelle Sprinten ligger. Som man kan se av figur 1.4 gir det en veldig oversiktlig

fremstilling. Man ser hvilke oppgaver som er i sprinten, hvilken Epic de har blitt tildelt og

hvor langt i prosessen man er kommet. I tillegg kan man se hvem som har fått tildelt

oppgaven og hvilken prioritet den har. Man kan også gå inn på hver enkelt oppgave og legge

til beskrivende tekst, vedlegg / screenshots og kommentere, slik at man kan følge opp saker

underveis (figur 1.5). Oppgavene er også nummererte og inneholder en tittel, slik at de skal

bli lettere å finne igjen.
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Figur 1.5 - En typisk oppgave (Task) i Jira

Figur 1.6 - Backlog i Jira
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Resten av oppgavene ligger i Backlog og er ikke synlig på tavlen (figur 1.6). Vi la inn alle

oppgavene som måtte fullføres i Backlog med startdato og sluttdato for estimert tidsbruk. I

Backlog finnes alle oppgavene som er nedprioritert eller vi ikke er klare til å begynne med.

Roadmap brukte vi som en fremdriftsplan. Fordelen med å ha fremdriftsplanen i Jira er at

oppgavene kan sorteres etter tidsperioder og type oppgave. Som man kan se på figur 1.7 har

Jira fordelt Epics i ulike farger og sortert dem i kategorier på en tidslinje med oppgavene og

tidsperioden de ble satt i. Samtidig viser “Releases” med grønt (ferdig), blå (påbegynt) og grå

(gjenstående) hvor mye av oppgavene som er fullførte. I Appendiks 3 finnes en mer detaljert

visning av fremdriftsplanen.

Figur 1.7 - Fremdriftsplan / Roadmap (utklippet viser oppgaver som Ferdig, og dermed strøket over)

Vi fastsette egne rammer for Sprinter, Epics og milepæler. Disse utarbeidet vi sammen i

starten for at alle kunne bli samkjørt med bruken av Jira. Oversikt med forklaringer,

definisjoner og periodisering finner du i Appendiks 4.

1.2. Kravspesifikasjon

Kravspesifikasjon er en formell avtale mellom leverandør, gruppen i dette tilfellet, og

oppdragsgiver. Den bør være klart definert og sørge for at begge parter har en enighet om

felles mål (Altexsoft, 2021). Kravspesifikasjonen legger grunnlag for arbeidet med

applikasjonen og kan være avgjørende for om produktet møter oppdragsgiverens behov og

forretningsmål. I vårt prosjekt delte vi disse målene inn i Funksjonelle og Ikke-funksjonelle

krav, noe som er vanlig å gjøre i software-utviklingsprosjekter. Funksjonelle krav beskriver

hva applikasjonen skal gjøres, f.eks. ulike brukerfunksjoner og andre ting som brukeren
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gjerne kan se på sluttproduktet (knapper, menyer, input-bokser, etc). Ikke-funksjonelle krav

beskriver gjerne hvordan applikasjonen skal fungere, f.eks. i form av ytelsesevne, sikkerhet

og kvalitet. Vi fikk ikke utdelt formelle krav fra oppdragsgiver av den grunn at de ikke hadde

kjennskap til våre evner og hva de kunne forvente av oss. Oppdragsgiver økte oppgavens

omfang med ytterligere ønsker underveis i prosjektets gang. Kravene som ble opprettet av

gruppen i startfasen ble utformet på grunnlag av notater fra initielle møter med

oppdragsgiver.

Funksjonelle krav Resultat

De ansatte skal kunne kategorisere data de

vil se basert på selvvalgt filter.

Vi implementerte et søkefelt der den ansatte

skal kunne filtrere søk basert på ulike

verdier som eks. kjønn, alder, datapakke,

etc.

Løsningen skal kunne gjøre kall til

databasen og tilgjengeliggjøre dataene

gjennom API’er/endepunkter.

Med Java lagde vi controller-klasser i

backend som administrerer API’ene mot

brukergrensesnittet.

De ansatte skal kunne kategorisere kundene

i ulike kategorier basert på churn risiko.

I samme søkefelt som i første punkt kan

kunden også søke etter brukere basert på

deres churn-risiko prosent.

Løsningen skal bruke maskinlæring for å

finne frem til en kundes churn-risiko.

Gjennom Flask henter applikasjonen

maskinlæringsmodellen vår, skrevet i

Python og med Jupyter Notebook, og kobler

den opp mot applikasjonen.

De ansatte skal kunne logge seg inn på

løsningen gjennom credentials, og

opprettholde tilkoblingen med sessions.

(ikke avklart om det skal være bruk av

SAML/intern Azure kobling)

Vi endte med en løsning med Basic

Authentication som krever brukernavn og

passord. Den oppretter LocalStorage eller

SessionStorage17 som gir videre tilgang til

andre sider i applikasjonen. Verken

17 LocalStorage og SessionStorage blir nærmere forklart i kapittelet om sikkerhet.
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SAML/intern Azure kobling ble brukt som

løsning hittil.

De ansatte skal kunne hente oppdatert

informasjon om hver enkelt kunde, og

denne oppdateringen skal skje en gang i

døgnet.

Vi har lagt inn funksjoner og endepunkt for

at man skal kunne oppdatere datasettet, men

dette er ressurskrevende og det vil ta mye tid

for oppdragsgiver å hente oppdatert data

fra deres interne database og sende det til

vår database. Det er ikke mulighet for dette

i applikasjonen i dag.

De ansatte skal kunne laste ned en

presentasjon av resultatene i PDF-, csv-

eller Excel-format.

Dette kravet ble ikke prioritert, da det

verken var kritisk for applikasjonen at

denne funksjonen ikke var på plass, og

heller ikke var utslagsgivende for å oppnå

andre mål eller krav.

Ikke-funksjonelle krav Resultat

Løsningen er godt dokumentert med planer,

modeller, test-dokumentasjon og loggføring

for eventuelt videre drift og utvikling.

Med denne rapporten og tilhørende vedlegg

(appendiks), samt README.md filen, mener

vi at applikasjonen er godt dokumentert for

videreutvikling etter endt prosjekt.

Løsningen skal være bygget slik at den er

skalerbar og kunne tilpasse seg

kontinuerlige oppdateringer av databasen.

Vi bygget prosjektet slik at den kan skaleres

om det er ønskelig på et senere tidspunkt.

Mer om dette i kapittelet om

Systemarkitektur.

Løsningen skal ha god responstid. God

responstid vil si at det skal ta mindre enn 10

sekunder for datasettet vi har fått.

På grunn av ferdig lastet inn data og en

modell som kjører bra, så tar det rundt 5

sekunder med dagens løsning å hente

resultatene fra maskinlæringsmodellen og

databasen. Ideelt skulle vi ønske at
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modellen brukte under 5 sekunder, da det

hadde økt kvaliteten på applikasjonen.

Løsningen skal være brukervennlig med

tanke på design og utforming. Det er

ønskelig at løsningen skal ha et universelt

utformet design og brukergrensesnitt.

Vi har brukt et design-komponenter fra et

ferdig bibliotek som er tilpasset universell

utforming og brukervennlig design. I tillegg

har vi tatt hensyn til oppdragsgiverens eget

design på sine produkter.

1.2.1. Brukerhistorier

Vi utformet noen brukerhistorier (Use Cases) som bygger på noen av kravspesifikasjonene

som skulle gjøre det lettere for oss å kunne visualisere utformingen og formålet med noen av

kravene.

1. Som

skal jeg kunne

slik at

ansatt

se statistikk over kundebasen gruppert etter alder, forbruk,

abonnement eller churn.

jeg kan få overordnet innsikt i forbruksmønsteret til kundebasen.

2. Som

skal jeg kunne

slik at

ansatt

se statistikk på en valgt bruker

jeg kan få innsikt i den enkelte kundes abonnent-bruk.

3. Som

skal jeg kunne

slik at

business analytiker

se oversikt over hvilke kundegruppe som er i risikosonen for å

churne

jeg kan vite hvilken kundegruppe som vi bør gjøre proaktive tiltak

for å beholde.

4. Som

skal jeg kunne

slik at

business analytiker

se sannsynlighet for hvorvidt en kunde er i risiko for å avslutte

kundeforholdet

jeg kan planlegge videre handling for å motvirke churn på den

spesifikke abonnenten.
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5. Som

skal jeg kunne

slik at

utvikler

bytte ut datakilden/rådataene og fortsatt ha en fungerende

webapplikasjon som er skalerbar.

6. Som

skal jeg kunne

slik at

business analytiker

spesifisere søk etter ulikt forbruk

jeg kan utvikle business-strategier for den valgte gruppen.

7. Som

skal jeg kunne

slik at

business analytiker

spesifisere søk etter ulik kundeinformasjon og få opp visuelle

fremstillinger i form av grafer

jeg kan utvikle strategier for den valgte gruppen.

Brukerhistoriene hjalp oss å se hvordan vår applikasjon eventuelt ville bli brukt i praksis.

Gjennom akseptansetestingen (kapittel 4.7.4. Brukerstesting (akseptansetest)) fikk vi prøvd ut

noen av brukerhistoriene og testet om applikasjonen tilpasset brukernes faktiske behov.

1.3. Valg av teknologi

Valget av teknologier var hovedsakelig basert på erfaring gruppen hadde fra før, men noen av

teknologiene ble valgt på bakgrunn av ønsker fra oppdragsgiver. Gruppen la likevel vekt på å

ha en attraktiv løsning som følger dagens marked og arbeidslivet generelt. Vi endte med å

lære en del nytt underveis og fikk utfordret oss selv og bruke moderne verktøy som vi ikke

tidligere hadde brukt.

Java

Java er det programmeringsspråket gruppen har hatt mest erfaring med. Det

er et objektorientert språk basert på konseptet om objekter som inneholder

data og kode, der metoder eller prosedyrer er knyttet opp mot objektene

(IBM, 2023). Det er et robust språk som brukes mye i Enterprise

applikasjoner og næringslivet (Stanford, 2008).

Spring

Boot

Spring Boot er et rammeverk med åpen kildekode som brukes for å lage Java

web-applikasjoner. Det tilbyr et godt system for konfigurasjon av

programvare-avhengigheter og gjør det enkelt å lage en frittstående

applikasjon. ‘Dependency injection’ er sentralt her; det lar objekter definere
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sine avhengigheter som senere blir tilføyd av rammeverket (IBM, 2023). Det

tilbyr også mange innebygde metoder for å behandle data og objekter, samt

metoder for å kommunisere med en database.

MySQL

MySQL er en relasjonsdatabase med åpen kildekode som brukes til å lagre

og administrere data i tabeller som er knyttet opp mot hverandre. Den støtter

SQL (Structured Query Language), som er et standardisert språk for å hente

og manipulere data fra en database. SQL er et deklarativt språk, som betyr at

man beskriver hva man vil ha fra databasen, og ikke hvordan man vil ha det.

Det kan brukes til å hente, legge til nye, oppdatere eksisterende, eller slette

data. MySQL er en av de mest populære relasjonsdatabasene og brukes av

mange selskaper og organisasjoner. Det er kjent for å være raskt, pålitelig og

robust (talend, 2023).

Python

Python er et programmeringsspråk med mange bruksområder. Det er et

dynamisk skrevet språk, som (ulikt f.eks. Java) gjør at datatypene/objektene

er implisitt basert på verdiene de blir satt til. Det støtter flere

programmeringsparadigmer som strukturelt, objekt orientert og funksjonelt.

Det er det mest brukte språket for maskinlæring og data science (Raschka et

al, 2020, s. 1).

Jupyter

Notebook

Jupyter Notebook er et verktøy som brukes til å redigere og kjøre

Notebook-dokumenter. Her kan man skrive kode (oftest i Python), men også

legge til vanlig tekst. Istedenfor vanlig IDE18 hvor man skriver all kode før

det kjøres, har Notebook muligheten til å skrive en linje kode som kan kjøres.

Verktøyet er mye brukt innen data analyse og AI-implementering (ibid.). Vi

har brukt bibliotekene Pandas og Numpy for databehandling.

Flask

Flask er et lettvekts rammeverk for Python. Det kan kalles et

micro-rammeverk siden det ikke har mange avhengigheter til eksterne

biblioteker19. Det er mulig å laste opp en Pickle-fil som inneholder en

19 Samling av ferdigbygde kode-elementer, skript eller rutiner som kan brukes for å forenkle
utviklingsprosessen.

18 Integrated development environment (Integrert utviklingsmiljø)
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maskinlærings-modell, og å tilgjengeliggjøre et endepunkt for å analysere

data slik som vi har gjort i dette prosjektet (pythonbasics, 2021).

JavaScript

JavaScript er et programmeringsspråk som brukes til å lage interaktive

nettsider og applikasjoner. På klientsiden brukes JavaScript for å lage

dynamiske og responsive nettsider som kan endre innhold og utseende uten å

måtte laste siden på nytt. JavaScript er et viktig språk for utvikling av

moderne nettsider og applikasjoner (Nätt, 2020).

React

React er et rammeverk for JavaScript utviklet av Meta, men brukt av

utviklere i hele verden. Et av grunnprinsippene for React er muligheten til å

gjenbruke koden fordi den er modulær og komponentbasert, samt veldig

fokusert på høy ytelse. Reacts virtuelle DOM (Document Object Model) gir

en raskere og mer effektiv oppdatering av grensesnittet når data

endres(Duldulao & Cabagnot, 2021, s.3). Dette gir bedre ytelse og mer

responsive applikasjoner.

Ubuntu

Ubuntu er et Linux-basert operativsystem (OS) med åpen kildekode. Ubuntu

OS er optimalisert for servere og skyplattformer. Det er utviklet for å gi en

mer effektiv og sikker plattform for webtjenere, applikasjonsservere og

databaseservere (Loshin & Bigelov, 2021).

GitHub

GitHub er den største leverandøren av hosting av Git Repositories. Git er det

mest brukte systemet for versjonskontroll. GitHub tilbyr et godt grensesnitt

for å holde oversikt over endringer i koden, spore bugs og gjøre det lettere for

flere utviklere å jobbe sammen om et prosjekt.

Postman

Postman er et verktøy for å teste API’er. I vårt prosjekt har vi brukt Postman

for å sørge for at endepunktene fungerte som de skulle. Postman er populært

blant små bedrifter eller for enkle prosjekter fordi det er lett å anvende og

sette opp.

Alternativ teknologi
I dette avsnittet nevner vi et utvalg av de teknologiene vi valgte bort, men som kunne vært

aktuelle å bruke om vi hadde hatt andre forutsetninger. Alle disse teknologiene er også

anerkjente og godt dokumenterte.
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.NET

.NET er en Microsoft-teknologi som fungerer på Windows-plattformen, og

bruker hovedsakelig C# som sitt primære programmeringsspråk. .NET bruker

en monolittisk arkitektur, som betyr at applikasjonen er bygd som en stor enhet

(Microsoft, 2023). Vi valgte rett og slett Spring Boot fremfor .NET da vi hadde

mer kjennskap til Spring.

PostgreS

QL

PostgreSQL tilbyr avanserte funksjoner og mer fleksibilitet enn MySQL.

PostgreSQL har f.eks. innebygd støtte for geografisk informasjonssystem og

komplekse datatyper. For gruppens prosjekt ble dette noe mer avansert og

unødvendig da MySQL dekket våre behov. (Postgresql, 2023).

Angular er et alternativ til React som bruker TypeScript istedenfor JavaScript.

Angular har annerledes arkitektur og tilbyr toveis data-binding20. React tilbyr

derimot enveis data-binding, der data flyter fra øverste nivå ned til child

components21 (Simplilearn, 2023). Vi valgte React fordi det er mest brukt i

bransjen og det gir bedre ytelse og forenkler feilsøking.

Azure Cloud er et alternativ til Ubuntu-server. En mulighet hadde vært å ha

applikasjonen i cloud. En av fordelene er blant annet skalerbarhet, pålitelighet

og automatisering (Microsoft, 2023). Hovedårsaken til at gruppen har anvendt

en Ubuntu-server er at den ble tilgjengeliggjort for gruppen av oppdragsgiver

for å utføre prosjektet.

GitLab

GitLab er ofte brukt av mange selskap i Norge, mest på grunn av muligheten

til å ha det på egen server (self-hosted GitLab). GitLab er ikke noe gruppen var

kjent med fra tidligere, og fordi gruppen hadde studentlisens på GitHub, var

det en bra nok løsning for oss.

Swagger

Swagger er et anerkjent verktøy for å implementere, dokumentere og teste

API’er. Swagger brukes gjerne i større bedrifter og har flere funksjoner enn

Postman. Det er et kraftig verktøy, men også hakket mer avansert å bruke

(geeksforgeeks, 2022). Vi valgte Postman av den grunn at vi ikke hadde behov

21 Blir nærmere beskrevet i kapittelet om Frontend (React.js).
20 En mekanisme som tillater automatisk synkronisering av data mellom komponenter og brukergrensesnittet.
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for et så sterkt verktøy, også med tanke på at det hadde tatt oss mer tid å sette

oss inn i dette verktøyet.

2. Teori om churn og maskinlæring

Churn
“Churn” er enkelt forklart “kundetap”, dvs. når en kunde avslutter sitt kundeforhold (Rautio,

2019, s.3). Det kan måles og omtales da som “churn rate” som er en prosentvis formel som

sier noe om hvor mange kunder et selskap mistet innenfor et spesifikt tidsrom

Figur 2.1 - “Formel for utregning av

Churn” (Fullview (u.å.) )

Innenfor telekombransjen og lignende SaaS-selskaper22 er churn et utstrakt problem

(gjennomsnittlig 13%), og hovedårsaken forblir uklar (ibid.). Man spekulerer i

priskonkurranse, generell misnøye med tilbudet/tjenesten, svak tilpasset abonnement for

kundens bruk, svak kundeservice, dårlig/ustabil dekning eller lignende (Rautio, 2019, s.7).

Det er et stort økonomisk fortrinn å kunne forutse og unngå churn. Det finnes utregninger

som sier hvor mye det koster å få inn en kunde, og vice versa hvor mye selskapet taper på at

en kunde forlater kundeforholdet. Forskning indikerer at firmaer burde fokusere på å holde

igjen eksisterende kunder (Ahn et al., 2020, s.3), og at “increasing customer retention rates

by 5% increases profits by 25% to 95%” (Reichheld & Sasser, 1990). Oppdragsgiver ønsket

at vi kunne bruke maskinlæring for å komme frem til trender og faktorer for å forutsi om

kunder ville churne basert på deres dataforbruk.

De hadde noen hypoteser og teorier om årsakssammenheng mellom churn-risiko og enkelte

variabler. Disse ønsket vi å se nærmere på og finne ut om det kunne være noe sannhet i. Om

22 SaaS (Software-as-a-service) er en distribusjonsmodell hvor programvare leveres over internett som en
tjeneste, slik at brukere kan få tilgang til og bruke applikasjonene uten å måtte installere eller vedlikeholde
programvaren lokalt.
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etablerte teorier fra oppdragsgivers churn-analyse-team stemte overens med de resultatene vi

fant ville det også indikere at vi var på rett spor. En større hypotese var at det kan være en

sammenheng mellom churn og kundenes databruk i forhold til inkludert data23.

Oppdragsgiveren fant at det var en terskelverdi (figur 2.2). Disse kundene som ligger på "det

gylne snittet” blir som regel lenger hos teleoperatøren enn de andre gruppene.

Figur 2.2 - Rekonstruksjon av graf vi fikk fra oppdragsgiver. Reell data er konfidensiell. Grafen illustrerer

områder og punkter som er avgjørende for churn rate. (T. Felix, personlig kommunikasjon, 04. april 2023)

En annen hypotese de hadde var at “value loads” kan være attraktivt for kunden. “Value

loads” er å tilby ekstra funksjoner eller fordeler til et produkt eller tjeneste (B. Hermansen,

personlig kommunikasjon, 30. januar 2023), noe som bidrar til økt kundetilfredshet og

lojalitet. I forbindelse med dette kunne man sett på oppsalg24 eller nedsalg25 som brukes som

strategier av oppdragsgiver for å øke inntektene og maksimere verdien av hver kunderelasjon.

Oppsalg og nedsalg er interessant å se på i forhold til hvilke tendenser kunden har rundt eget

forbruk. Disse faktorene tror oppdragsgiver kan være av stor betydning for om kunden er i

risiko for å churne. Men denne hypotesen er noe vi ikke fikk utforsket, da vårt datasett ikke

inneholdt informasjon om kostnader og betalinger. Vi hadde ikke tilstrekkelig informasjon for

å undersøke dette nærmere. Med tanke på målet hadde det nok vært lurt å inkludere disse

variablene, men på grunn av tiden til rådighet og arbeidet med datasettet hadde blitt enda mer

omfattende falt dette bort. Likevel ser vi ikke bort ifra at denne vil være meget aktuelt å

inkludere i videreutvikling av maskinlæringsmodellen vår.

25 Refererer til motsatte, hvor en kunde tilbys et billigere eller lavere kvalitetsprodukt eller tjeneste.
24 Refererer til prosessen med å selge et dyrere eller høyere kvalitetsprodukt eller tjeneste til kunden.
23 Mobildata / datapakke som inngår i abonnementet.
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Maskinlæring
Maskinlæring er prosessen med å lære opp en maskin til å utføre en kompleks oppgave som

mennesker kan ha vanskeligheter med å gjøre alene. Man mater en maskin med data og får

maskinen ved hjelp av algoritmer til å forsøke å gjøre en prediksjon og foreta en beslutning

eller beregning ut fra dette. Churn-prediksjon er en utfordrende oppgave, og et utbredt felt

innen forskningen. Det brukes mange ulike typer algoritmer avhengig av hvilket formål eller

svar man vil ha. Men i arbeidet med churn-prediksjon, blir det vanligvis ansett som et binært

klassifiseringsproblem. I forskningsartikkelen til Lalwani, P. et al. har de brukt blant annet

klassifiserings-algoritmene26 Logistic Regression, Naive Bayes, Support Vector Machine,

Random Forest, Decision Trees, blant flere, som fremgangsmåter for churn-prediksjon

(Lalwani et al., 2022, s. 272-273). De kom frem til at AdaBoost og XGBoost Classifier gav

høyest treffsikkerhet på 80% (ibid. s. 288-290). Ut fra artikkelen kan vi ikke se hvilke

features de tok med, så det kan spille en faktor på resultatene. En annen forskningsartikkel

skrevet av Ahmad, A.K. et al, anvender de også klassifiserings-algoritmer som Decision Tree,

Random Forest, Gradient Boosted Machine Tree “GBM” og Extreme Gradient Boosting

“XGBoost” for å finne frem til churn-risiko. Med deres metoder kom de fram til at XGBoost

gav best resultat på 93% treffsikkerhet (Ahmad et al., 2019, s. 18-20). De hadde en litt annen

tilnærming ved at de hadde 70% treningsdata og 30% testdata. De har heller ikke inkludert

detaljer om features i artikkelen. Ullah, I. et al prøvde de på flere algoritmer innenfor

klassifisering, og fant at Random Forest og J48 gav best resultat; hele 88% (Ullah et al.,

2019, s. 60141-60142). I deres forskningsartikkel har de brukt reell CDR som utgangspunkt

og laget features som totalt antall samtaler, totale minutter, totalt innkomne og utgående

minutter, samtaler på nett, samtaler på nett i minutter osv (ibid., s.60146). Det er den siste

artikkelen som vi har lagt mest vekt på når vi lagde vår modell. Deres features har

likhetstrekk med våre egne og de har hatt fokus på Random Forest algoritmen som vi også

har anvendt i vår modell. Forskjellen er at vi har brukt Regression27 istedenfor klassifisering.

Vi vil snakke mer om vår modell i kapittel 4.2. Maskinlæringsmodellen.

27 Forklares nærmere i kapittelet om Maskinlæringsmodellen.
26 Klassifisering forklares nærmere i kapittelet om Maskinlæringsmodellen.
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3. Utviklingsprosessen

Utviklingsprosessen var organisert gjennom bruk av Jira, som nevnt i kapittel 1.1.

Planlegging og metode. For å oppdatere hverandre på fremdriften, delegere oppgaver og

identifisere utfordringer, holdt gruppen møter. Disse møtene ga oss muligheten til å diskutere

hva hver enkelt av oss jobbet med og hvor langt vi var kommet med oppgaven, om det var

noen utfordringer og hva som burde fokuseres på fremover. I starten prøvde vi å få til å holde

disse møtene ukentlig med fast agenda, men etterhvert ble disse møtene mer flytende da

timeplanene våre ble forskjøvet. Dessuten merket vi at disse møtene kunne bli unødvendig

lange og tok opp tid vi heller kunne bruke på å jobbe med selve prosjektet. Det var viktig at

vi da fortsatte å kommunisere godt gjennom Slack og sosiale medier for å holde hverandre

oppdaterte. Under kan du se et eksempel på notater fra et av møtene vi hadde i Sprint 2 (figur

3.1).

Figur 3.1 - Mål for uke 4, Sprint 2

De mer strukturerte møtene, som f.eks. møtene med oppdragsgiver eller Retrospektiv, ble

loggført og lagt inn i Confluence (Appendiks 5). På Retrospektiv-møtene hadde vi fokus på å

presentere status på prosjektet og hvor vi lå an, diskutere videre plan og mål for neste Sprint,

samt organisere og (om)prioritere de nye oppgavene. Det var også et viktig tema for alle

Retrospektiv å evaluere hva gruppen var god på og hva vi burde bli bedre på i tiden fremover.

Det gav oss læring og mulighet til forbedring. Gruppen var bevisst på at læring og forbedring

var viktige elementer i prosessen, så vi prøvde å være åpne på kunne diskutere og komme

med konstruktive tilbakemeldinger til hverandre. Vi evaluerte hva som fungerte bra og hva

som kunne forbedres, og var villige til å prøve nye tilnærminger for å forbedre prosessen.
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Figur 3.2 - Retrospektiv Sprint 2 med Tilbakeblikk på Sprint 1 (læring og forbedring fra forrige Sprint)

Figur 3.3 - Retrospektiv Sprint 2 (læring og forbedring inneværende Sprint)

Selv om vi opprinnelig planla at alle i gruppen skulle få jobbe med alt slik at alle fikk så likt

læringsutbytte som mulig, utviklet det seg etter hvert mer tydelige ansvarsområder i

prosjektet. Dette var en naturlig utvikling som var basert på «spesialkompetanse» og behovet

for å fokusere på spesifikke oppgaver. Vi innså også etterhvert at det ville blitt brukt mye tid

på at alle skulle lære seg alle teknologier like godt og være like flinke til alt. Det ville gått

utover produktiviteten da vi antakelig hadde brukt mer tid på opplæring og å sette alle inn i
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hver enkelt oppgave. Dette igjen hadde ført til at det hadde tatt lengre tid å fullføre prosjektet.

Selv om det påvirket den opprinnelige planen, ble kommunikasjonen og samarbeidet mellom

gruppemedlemmene opprettholdt, og gruppen fortsatte å jobbe produktivt. Det tillot oss å

fokusere på spesifikke oppgaver og følge dem opp på en mer effektiv måte.

Figur 3.4 - Endring i fordeling av oppgaver gjennom tid - ingen kilde, laget av oss selv i figma

Ettersom vi kommuniserte godt var det mulig å jobbe individuelt, men også at flere jobbet

sammen om en oppgave, eller at noen byttet mellom en oppgave eller to. Med denne

arbeidsstrukturen var det lett å holde oversikt over arbeidet og følge med på hva som fungerer

og ikke fungerer i prosessen. Dette gav utbytte i form av at vi kunne lære av egne feil og

gjøre forbedringer underveis. Gruppen var også nødt til å være åpen for endringer i

ansvarsområder for å sikre at prosjektet ble gjennomført på en mest effektiv måte.

Eksempelvis hvis en i gruppen var ferdig med en oppgave og ikke hadde fått tildelt en ny,

kunne den personen hjelpe en annen med å bli ferdig med sin oppgave i Sprinten. Alternativt

kunne den som var ferdig ta over en av de andres oppgaver som ikke var påbegynt.

Vi brukte GitHub Actions (GitHub, 2023) for å automatisk bygge Spring- og

React-applikasjonene hver gang vi godkjente en kodebit til main branchen. Denne

arbeidsflyten til GitHub Actions kjørte hver gang noen pushet noe til main branchen og

fungerer som en sikring på at det ikke legges til noen endringer som gjør at hoved-koden ikke

kompileres. Det er en form for Continuous Integration, og er en viktig del av DevOps

prinsippene. Vi har gjennom utviklingsprosessen kjørt applikasjonene lokalt, men hvis vi

skulle deploye dem hos en skyleverandør for eksempel, kunne vi gjort dette med en GitHub

Actions workflow.
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Figur 3.5 - Godkjent byggeprosesser

3.1. Risikoanalyse

En risikoanalyse er en viktig del av software-utviklingen, og den bør gjøres i en tidlig fase.

Den har til hensikt å identifisere og vurdere potensielle risikofaktorer som kan ha påvirkning

på utviklingsprosessen. Risikoanalysen vil i tillegg hjelpe gruppen til å tidlig innføre tiltak og

endringer i planleggingen slik at eventuelle negative påvirkninger reduseres og uheldige

scenarioer kan unngås (Hayes, 2023). Derfor er risikoanalyse svært viktig. Følgelig gjorde vi

også risikoanalyse tidlig i prosessen. Gruppen gjorde en helhetlig vurdering av både interne

og eksterne faktorer som kan påvirke prosjektets fremdrift og suksess. Sammen identifiserte

vi potensielle risikoer som kan føre til forsinkelser, uenigheter og avsporing under

utviklingsprosessen. I tillegg kategoriserte vi disse risikoene basert på hvor stor sannsynlighet

det var for at de kunne oppstå underveis. Et eksempel på en risiko som skjedde som hadde

veldig høy sannsynlighet, men som vi vurderte av liten konsekvens var R8.

ID Risiko Konsekvens Mulige tiltak Kategori

R8

Feilestimering

av tid på

utviklings-

prosessen.

> Forsinkelser i

arbeidet som gjør at

oppgaver ikke blir

fullført i tide eller

etter planen.

> Ha en detaljert arbeidsplan og godt

dokumentert fremdriftsplan.

> Fordele arbeidet mellom studentene på

en fornuftig måte.

Estimering

Vi implementerte mulige tiltak, og da vi forsto at arbeidsmengden ville overstige tidsrammen,

ble det behov for å endre fokus på oppgavene. Heldigvis hadde vi planlagt milepæler som

gjorde det enklere å prioritere bort det som kunne gjøres på et senere stadium. Et annet

eksempel på en risiko vi vurderte og som vi var nødt til å håndtere var R7.
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ID Risiko Konsekvens Mulige tiltak Kategori

R7

Endringer i krav-

spesifikasjoner

underveis.

> Endringer i kravene

medfører omfattende

“redesign” av

løsningen, som igjen

kan føre til alvorlige

forsinkelser i

prosessen.

> Sørge for at kravspesifikasjonene er

godt utarbeidet fra start, så det ikke blir

nødvendig å gjøre større endringer.

> Sørge for å ha god dialog med

oppdragsgiver fra start og få kartlagt mål

og ønsker så presist som mulig.

Krav

Det var ingen store krav som medførte store endringer på løsningen, men krav fra

oppdragsgiver var i startfasen løst definert. Vi fikk en oppgave med frie rammer som vi måtte

utarbeide. Dette viste vi til oppdragsgiver som var positivt innstilt til våre planer. Ettersom vi

startet på utviklingen av løsningen ble det etterhvert tydeligere for oppdragsgiver hva de

ønsket ut av vårt arbeid. Forslag ble til ønsker som senere ble forventninger. Slik som forrige

beskrevne risiko, ble det behov for å justere målene og oppgavene underveis slik at vi kunne

tilpasse oss ønskene til oppdragsgiveren. Når det gjelder R12 har denne risikoen ennå ikke

oppstått. Vi anser sikkerheten som er implementert for løsningen som svak og dermed utgjør

en reell fare for prosjektet. Dette gjør at vi valgte å ta forhåndsregler for å beskytte oss selv,

løsningen og oppdragsgiver og sterkt begrense applikasjonens tilgjengelighet. Dette minsker

sannsynligheten for at R12 vil inntreffe.

ID Risiko Konsekvens Mulige tiltak Kategori

R12

Hacking,

angrep på

brannmur

eller andre

sikkerhets-

mekanismer.

> Sikkerheten til løsningen

blir truet og det kan

potensielt gå utover

personvern og sensitive

opplysninger blir lekket eller

uvedkommende får tilgang.

> Sørge for gode rutiner for å lagre

passord og tilgang på en sikker

måte.

> Være bevisst på mulige trusler og

følge standarder for god

sikkerhetshåndtering.

Produkt

Vi mener den grundige risikoanalysen har bidratt til at gruppen oppnådde en bedre forståelse

av de potensielle utfordringene som kan være kritiske for utviklingen underveis. Dette har

gjort det mulig for oss å være proaktive og løsningsorienterte allerede fra begynnelsen av.

Dette tenker vi er en nøkkelfaktor som fører til at prosjektet blir vellykket og samarbeidet i

gruppen har fungert godt.
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Figur 3.6 - Vår risikoanalyse. Beskrivelse av risikofaktorene finnes i Appendiks 6

3.2. Systemarkitektur

Backend er kjernen i systemet som binder de forskjellige delene sammen. Spring Boot tilbyr

et rammeverk for å utvikle Java-baserte webtjenester og RESTful API-er. REST

(Representational State Transfer) API er en tilnærming til å designe og bygge webtjenester

som tillater kommunikasjon mellom forskjellige datamaskiner og programmer over internett.

REST API bruker den eksisterende HTTP-protokollens metoder, som GET, POST, PUT og

DELETE, for å utføre operasjoner på data (IBM, 2023). Backend-applikasjonen inneholder

kontroller-klasser som definerer API-endepunkter og behandler forespørsler fra klienter. Den

kommuniserer med de andre komponentene i systemet for å hente, lagre og behandle data.

Figur 3.7 under viser den endelige systemarkitekturen for vårt prosjekt. Dette er den nyeste

versjonen som skiller seg noe fra våre første utkast (Appendiks 7).
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Figur 3.7 - Systemarkitektur

MySQL-databasen er integrert med JPA (Java Persistence API) og tilbyr enkel integrasjon

med Spring Boot. Ved hjelp av JPA-repositorier og Hibernate-ORM, (Hibernate, 2023) kan

Spring Boot forenkle repository og håndtere spørringer og transaksjoner. Vi har anvendt

ORM (Object Relational Mapping) som er en teknikk som brukes i programvareutvikling for

å knytte sammen OOP (Objektorientert Programmering) og relasjonsdatabaser. Frontend er

brukergrensesnittet til systemet, utviklet ved hjelp av React-biblioteket. Den kommuniserer

med backend via HTTP-forespørsler til API-endepunkter definert i Spring sine

kontroller-klasser. Frontend henter og viser data til brukeren, og sender også

brukerhandlinger og data tilbake til backend for behandling. Flask-serveren tilgjengeliggjør

de trente maskinlæringsmodellene vi har utviklet. Den tar imot spørringer fra backend, sender

data til modellen for prediksjon, og returnerer resultatene. Dette resulterer i en helhetlig

løsning der hver komponent utfører hver sin funksjon og samhandler gjennom Spring Boot.
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3.2.1. Cloud Hosting vs egen hosting av server

Kundedataene ble tilgjengeliggjort av oppdragsgiver gjennom en MySQL-server som er

hostet i en Ubuntu virtuell maskin. Gruppen så på Cloud-alternativer som Amazon Web

Services og Microsoft Azure. Vi gjorde egne undersøkelser og sammenligninger for å finne ut

pris, effektivitet og tilpasning, men på grunn av høye kostnader og applikasjonens formål ble

det sett på som mest hensiktsmessig av begge parter å bruke egen hosting av servere.

Oppdragsgiver hadde et ønske om å ha minimale kostnader for utførelsen av prosjektet. I

tillegg hadde oppdragsgiver tilbudt å opprette en Ubuntu-server fra leverandører de selv

benytter.

Figur 3.8 - Mikro-tjeneste arkitektur med Ubuntu som server

3.2.2. Monolittisk arkitektur vs mikrotjeneste-arkitektur

Monolittisk arkitektur er en måte å bygge et system som en enkelt enhet, der alle

komponentene er tett koblet og avhengige av hverandre. Fordeler med monolittisk arkitektur

er at den er enkel å utvikle, teste og distribuere. Ulemper er at slik arkitektur kan være

vanskeligere å vedlikeholde, skalere og oppdatere over tid (Gos et al., 2020, s. 153).

Mikrotjeneste-arkitektur derimot er en måte å bygge et system som består av mange små og

autonome tjenester som kommuniserer med hverandre. Noen fordeler med

mikrotjeneste-arkitektur er at den gir bedre modularitet, fleksibilitet og skalerbarhet.

Ulempene er at den krever mer komplekst design, koordinering og overvåking (Bårdgård,

2021). Blant kravene for å ha mikrotjeneste-arkitektur er at alle tjenester (services) har sin

egen database, og kobling mellom tjenester skjer gjennom API-kall. Det er tre

hovedkomponenter som primært utgjør hele løsningen. Spring inneholder både backend og
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frontend, Flask kjører maskinlæringsmodellen i python og MySQL-databasen kjører separat i

Ubuntu-miljøet. Konklusjonen er at arkitekturen i dette prosjektet er en hybrid av både

monolittisk og mikrotjeneste. Den følger prinsipper for mikro-tjeneste arkitektur, selv om

ikke alle lagene inneholder sin egen database. Vi valgte å gjøre det på denne måten fordi det

var lettere å jobbe på et og samme prosjekt i samme database. Vi delte opp prosjektet inn i

tjenester som skal være enkle å dele opp. Dette er noe som eventuelt vil bli aktuelt dersom

oppdragsgiver ønsker å videreutvikle løsningen vår.

4. Produktdokumentasjon
4.1. Introduksjon av løsningen

Figur 4.1 - Flytdiagrammet viser

hvordan data overføres mellom de

ulike komponentene

Oversikt over systemflyten er synlig i figur 4.1 vist over. Som nevnt er vår løsning satt

sammen av tre separate applikasjoner og en database. Vi har gjennomgående brukt
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støttebiblioteker for alle tre. I backend er de definert i en "pom.xml"-fil, i frontend er disse

definert i en “package.json”-fil og i maskinlæringsserveren er de en del av Python

VirtualENV. Kort oppsummert: Backend er utviklet med Spring Boot og Java som håndterer

logikken og databehandlingen på servernivå. Frontend er bygget med React og JavaScript

som er ansvarlig for å presentere brukergrensesnittet til brukerne. Det er også rammeverket

oppdragsgiver bruker. Maskinlæringsanalyse av kunder utføres med Flask API.

MySQL-databasen brukes til lagring og henting av data mot Backend. Ubuntu-serveren som

ble tilgjengeliggjort for gruppen av oppdragsgiver krever brukernavn og passord for å få

innvilget tilgang (figur 4.2). Samlet sett ga dette et brukervennlig grensesnitt som

kommuniserer med en pålitelig og skalerbar backend.

Figur 4.2 - Tilkoblingsinformasjon til databasen (sensurert)

4.2. Java og Spring Boot

I strukturen til backend har vi ønsket å ha en logisk oppdeling av ansvarsområder og tjenester.

Vi har gått for arkitekturen Controller-Service-Repository (Tom Collings, 2021). Dette

mønsteret følger prinsippet om “Separation of Concerns” ved å dele opp ansvarsområdene til

ulike komponenter. Termen “Separation of Concerns” ble først definert av Edsger W. Dijkstra

i 1974 (ibid.). Man deler opp ansvarsområdene så hvert lag av applikasjonen har sin rene

funksjon. Dette gjør det lettere å holde kontroll på hva som ligger hvor og kan være enklere å

debugge senere. Det kan også gjøre det lettere å skalere opp senere ved at man legger til flere

kontrollere, services eller repositories uten å påvirke resten av applikasjonen. En ulempe med

et slikt type mønster er at det kan medføre større kompleksitet i koden. For mindre

applikasjoner som vårt prosjekt var det strengt tatt ikke nødvendig, men vi ønsket å følge en

slik struktur for å lære oss konseptet og bruke et etablert designmønster.
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Figur 4.3 - Illustrasjon på design mønster.(Kouomeu, 2022)

En annen mulighet vi så på var å bruke arkitekturen Model-View-Controller (MVC). MVC

fungerer ved at den deler ansvar mellom modell, visning og kontroller. Modellen

representerer data og logikk, visningen håndterer brukergrensesnittet, og kontroller styrer

kommunikasjonen mellom modellen og visningen (Tutorialspoint, u.å.). I motsetning til vår

løsning skjer logikken i modell-laget som gjør at all logikken og databehandlingen samles og

blir mer kompleks. I vårt prosjekt er det mye data og logikk som må bearbeides. Service-laget

i Controller-Service-Repository gjør akkurat denne delen enklere og mer fleksibel.

Spring Boot tar seg av innkommende forespørsler og delegerer videre til de riktige tjenestene.

Tabellene i vår MySQL-database er koblet til Java-klasser, eller @Entities, som gjør det

mulig å behandle tabellene i databasen som objekter. De klassene som direkte korresponderer

med databasetabellene ligger i prosjektet vårt under mappen /models/entities. Vi har

også andre modell-klasser som f.eks. SubscriberFilter.java, og en Data Transfer

Object (DTO) klasse kalt SubcriberDTO.java. DTO brukes f.eks. for å kombinere

data fra flere tabeller inn i en klasse. Vi bruker da en felles primærnøkkel kalt subscriberID

for å trekke ut de relevante dataene vi trenger. Eksempelvis ville vi ha alle attributtene til en

Subscriber fra kundetabellen, men også Churn-prediksjonen som ble lagret i en annen tabell.

En fordel med bruk av DTO kan være redusert nettverkstrafikk. Ved å ha færre spørringer til

databasen kan det bidra til bedre ytelse. Det var også en fordel å forholde seg til kun et

objekt-type som inneholdt alt vi ville sende til klienten. Da mottas det enkelt som en liste

over objekter i den typen som kunne itereres over og håndteres av frontend. En ulempe med å

gjøre det på denne måten kan være at det påvirker DTO-objektene om strukturen til en av

tabellene i databasen blir endret. F.eks. hvis det blir lagt til eller fjernet features. Hvis

prosjektet skulle utvides med en større database eller andre tabeller senere må DTO
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oppdateres for å gjenspeile de nye endringene, ellers kan det oppstå avvik mellom databasen

og DTO-objektene og/eller konflikt mellom klient og server.

Figur 4.4 - Utklipp fra kode som slår sammen data fra 2 tabeller i et objekt

“/filter”-endepunktet har til hensikt å ta imot et SubscriberFilter-objekt fra frontend. I

Repository tar @Validated seg av input-validering for å sjekke at det er gyldige verdier før

forespørselen blir sendt videre til neste lag. @RequestBody er en REST-annotasjon som

forteller Spring at forespørselen, her et JSON-objekt28 fra frontend, skal bli konvertert til et

Java-objekt som vi har definert (Spring Framework, u.å.).

28 JavaScript Object Notation, universal format for å dele objekter mellom teknologier.
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Figur 4.5 - Illustrasjon av /onecall/filter endepunktet i MainController

Figur 4.6 - Utklipp av strukturen i models
mappen

Controller/API-laget har ansvaret for å eksponere tjenestene og endepunktene så de kan

brukes av andre tjenester. I vårt system er det React og Flask som vil bruke dette API’et. Det

er definert endepunkter som korresponderer med ulike metoder. Det er vår

MainController.java, som blant annet tar seg av forespørsel til

MainService.java. Alle endepunktene under MainController starter med adressen

/onecall (figur 4.7).

Figur 4.7- Utklipp av controllers mappen
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Som nevnt tar servicelaget seg av databehandlingen og logikken. I vår applikasjon har vi lagt

mesteparten av logikken i MainService.java. MainService innsetter tilgang til tre

forskjellige repositories gjennom konstruktøren. @Service gjør at Spring Boot automatisk

skanner og registrerer denne klassen som en Service-entitet. Dette er også kjent som

“dependency injection” hvor avhengighetene blir introdusert eksternt gjennom konstruktører,

metoder eller egenskaper fremfor at et objekt oppretter og håndterer sine egne avhengigheter.

Dette betyr at et objekt ikke trenger å være klar over hvordan avhengighetene opprettes, men

kan fokusere på sitt eget ansvarsområde. Vår Service-klasse har tilgang til

Repository/database-laget, og siden Service blir injisert i kontrolleren er dette nå også

tilgjengelig implisitt. Service fungerer altså som et mellomledd mellom Controller og

Repository. Det er for å unngå at det kommer en request direkte til et API som kaller rett på

datalagrings-laget.

Figur 4.8 - Koblingen mellom Service-laget og Repository

Figur 4.9 - Strukturen i services mappen og oversikt
over serviceklasser

Hvis forespørselen som kommer inn fra et kundesøk i applikasjonen ikke samsvarer med

grenseverdiene, blir inputfeilene samlet ved hjelp av et BindingResult-objekt og sendt tilbake

til klienten med en HTTP statuskode “Bad Request” (400). Det tar den innebygde klassen
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ResponseEntity seg av. Valideres forespørselen returneres statuskode “OK” (200) og

søkeresultatet i form av en liste med SubscriberDTO objekter.

Figur 4.10 - Validering av input og HTTP status retur.

Våre Repositories er bygget på høynivå-abstraksjon som gjør det lettere å implementere

tilgang til en database ved hjelp av Java Persistence API (JPA). (Oracle, 2015). I eksempelet

under (figur 4.11) definerer vi et MachineLearningRepository-grensesnitt som utvider det

innebygde JpaRepository. Den angir at Repository skal håndtere entiteter av typen

MachineLearningPred-objekt med en unik ID. Når vi oppretter en instans av typen

MachineLearningRepository, får vi tilgang til en rekke ferdig implementerte metoder for å

utføre operasjoner på MachineLearningPred-entiteter. Eksempler på dette er save(),

findAll(), findById()og delete(), og mange flere. JPA lager automatisk

SQL-spørringer basert på metode-navnet som reduserer vår arbeidsmengde med

data-aksesslaget(DAL).

Figur 4.11 - Utklipp av MachineLearningRepository
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Siden vi hadde tjenester fra forskjellige kilder, var det nødvendig for oss å sette opp

tillatelse-håndtering. Vi hadde kontroll over serveren, så vi kunne benytte oss av Cross-Origin

Resource Sharing (CORS) i konfigurasjonsinnstillingene. CORS er en standard som tillater

eller nekter forespørsler som kommer fra et annet opphav (Mozilla, u.å.).

Vi implementerte logging av hendelser som hjelper med konkrete og verdifulle beskrivelser

av det som blir kjørt. Dette er svært behjelpelig for feilsøking og feilhåndtering. Når det

kommer til unntakshåndtering (Exception Handling), blir alt håndtert gjennom

standardmetoder fremfor egendefinerte. Exceptions fanger opp feil eller uforutsette hendelser

som kan oppstå ved kjøringen av applikasjonen (Grønning & Vihovde, 2015). Tanken bak de

egendefinerte Exceptions var å kunne gi konsise og gode tilbakemeldinger til både serveren

og klienten hvis noe gikk galt. Fordelen med å ha egendefinert feilhåndtering er at det blir

lettere å løse feilen ettersom man raskere finner hva som har gått galt og på hvilket stadie i

utføringen feilen hadde skjedd. Den opprinnelige kjøreplanen hadde ikke dette under målet

om en MVP og ble derfor en nedprioritert arbeidsoppgave. Ettersom standardmetodene er

implementert, er ikke egendefinerte Exceptions en nødvendighet. Derimot når applikasjonen

ekspanderer og øker i kompleksitet vil egendefinerte exceptions bli svært fordelaktig.

4.3. Frontend (React.js)

Frontend-utvikling omfatter tradisjonelt sett bruk av JavaScript, HTML og CSS. I dagens

landskap er fokuset i stor grad rettet mot ulike rammeverk som forenkler utviklingsprosessen,

automatiserer oppgaver og muliggjør gjenbruk av kode (Hutagikar et al., 2020, s.3317). Disse

rammeverkene er hovedsakelig basert på JavaScript eller TypeScript. I et utviklingsprosjekt

velger man det rammeverket som egner seg best for det man utvikler. Det er små, men viktige

forskjeller mellom de ulike rammeverkene. For eksempel kan Angular være det riktige valget

hvis man har behov for toveis data-binding. React er et JavaScript/Typescript-basert bibliotek

for å bygge brukergrensesnitt for webapplikasjoner. En av de største fordelene med React er

at det bruker en deklarativ tilnærming til å bygge brukergrensesnitt, som gjør det enklere å

lage interaktive og dynamiske applikasjoner.

4.3.1. Struktur

Applikasjonen vår utviklet i React er delt inn i komponenter. En komponent er en

gjenbrukbar byggeblokk som består av HTML, CSS og JavaScript-kode. Komponentene kan
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enten være basert på klasser eller funksjoner. Bruk av Klassekomponenter var den

opprinnelige måten å definere React-komponenter på. De kan bruke livssyklusmetoder, og de

har også mulighet til å lagre tilstand i komponenten selv og har derfor mer funksjonalitet enn

funksjonskomponenter. Klassekomponenter er også kompatible med tredjeparts-biblioteker

og React-komponenter som er basert på klasser. Funksjonskomponenter er enklere og lettere

å forstå enn klassekomponenter (Wieruch, 2019). De er vanligvis kortere og krever mindre

kode, og gir derfor også bedre ytelse enn klassekomponenter. De er definert som en funksjon

som tar inn props-objektet29 som parameter og returnerer en React-komponent. Etter hvert

som React-økosystemet har utviklet seg, har funksjonskomponenter økt i popularitet. I det

siste har de blitt mye mer komplekse som har ført til at det er funksjonskomponenter som er

anbefalt for å lage enkle og rene komponenter (ibid.). Funksjonskomponentene er brukt

gjennom hele utviklingen. Vi ville gjennom søkeskjemaet vårt gjøre et POST-kall til backend

med søkekriteriene som returnerte et resultat. Vi ville vise dette resultatet i kundetabellen,

men det var ikke mulig å sende data mellom søket og tabellen. For å få til dette ble løsningen

å lage en felles forelderkomponent som inneholdt søkeskjemaet og tabellen. Når brukeren

trykker på søkeknappen ble det brukt en callback-funksjon for å sende dataen fra skjemaet

opp et nivå.

Figur 4.12 - Utdrag fra koden der kall til backend blir gjort.

29 Data som utveksles mellom ulike komponenter.
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Figur 4.13 - Søkefelt Figur 4.14 - Resultat

formData tas imot av ParentCard, som sender en POST-request til backend. Kontekst er en

mekanisme som gjør det mulig å dele data på tvers av komponenter uten å måtte sende props

gjennom alle mellomliggende komponenter (React, 2023).

Figur 4.15 - Diagram over dataflyt i frontend

Når dataen blir satt gjennom setAllMLSubscribers(data) gjør vi den tilgjengelig til

alle komponenter lenger ned i applikasjonsstrukturen. Dette gjøres gjennom DataContext som

også blir brukt i /Visualizations som er en egen side som visualiserer søkeresultatet i

grafer. Derfor var det også viktig å gjøre denne tilgjengelig gjennom DataContext.

Ved siden av den viktigste komponenten (App.js) som bygger selve nettsiden, så har vi

følgende struktur:
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Pages - det er sider i webapplikasjonen, og

de er bare en samling av ulike komponenter.

Disse komponentene formaterer data vist til

kunde (oppdragsgiver)

Hovedkomponenter (også kjent som Parent

Components) - er komponenter som

inneholder flere mindre komponenter. Det

kan f.eks. være blanding av en tabell, et

bilde og en graf, men i sin helhet er det

innhold som er synlig for brukeren

Komponenter (også kjent som Child

Components) - de aller minste komponenter

som ofte gjør kun en ting, f.eks. henter data

fra en database til en tabell, eller sender

data ved ulike JSON-kall.
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Figur 4.16 - Visualisering av flyten mellom komponentene

Som forklart ovenfor og vist med deler av koden, så er alt organisert hierarkisk, og

komponentene er satt sammen til et helhetlig brukergrensesnitt. Dashboard (under Pages) er

det øverste nivået i hierarkiet og fungerer som en side som vises til kunden. ParentCard

(under Hovedkomponenter) er en underordnet komponent til Dashboard, og samler små

komponenter som vises på siden. Denne komponenten tillater også dataflyt mellom mindre

komponenter. I vårt eksempel sender søke-komponenten data til backend, og resultatet som

kommer tilbake fra backend blir vist i en komponent som viser utskrift av det som er søkt

etter. UserInfo (under Komponenter) er igjen en underordnet ParentCard og ansvarlig for å

hente informasjon om en kunde fra databasen. Dette betyr at hele frontend er bygget opp av

flere komponenter slik at hver enkelt komponent har sin spesifikke funksjonalitet.

Flere komponenter

Sorting & Selecting Tables er en serie av tabeller som gir en enkel og intuitiv måte å lage

sorterings- og filtreringsfunksjonalitet for tabeller. For oppdragsgiver var det viktig å ha

enkel navigering i tabellen med veldig mange kunder. De ville sortere kunder etter churn

risiko, alder eller status.
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Grid   tilpasser seg skjermstørrelse og orientering, og sikrer konsistens på tvers av ulike

oppsett. Grid skaper visuell konsistens mellom innhold samtidig som den tillater

fleksibilitet for ulike design. Material Design sin responsive brukergrensesnitt er basert på

et 12-kolonners grid-layout.

Card gir en enkel og fleksibel måte å presentere innhold på. På grunn av universell

utforming har vi valgt å implementere Cards på nesten alle deler av applikasjonen. I tillegg

til Grid tilpasser den nettsiden til ulike skjermer.

Appbar er en komponent som ikke brukes aktivt på nettsiden ettersom fokuset ligger på

oversikt gjennom et dashboard, og filtrering basert på innhold fra database, samt

AI-algoritmen vår.

Date and Time Pickers brukes mest for å velge dato og tid når man vil søke på kundene

basert på start og sluttdato.

Tabs organiserer og tillater navigering mellom grupper av innhold som er relatert og på

samme nivå av hierarki. Oppdragsgiver ønsker f.eks. å se oversikt over databruk for en

kunde fordelt på flere måneder.

4.4. Design

Vårt designsystem består av verktøy, komponenter, farger, font og prosesser som er i harmoni

med OneCall sitt designsystem. Det overhengende mål var at det skal være lett å gjenkjenne

at produktet kommer fra OneCall. I tillegg var det et ønske fra begge parter om å bruke React

UI-komponent fordi det er åpen kildekode, lett tilgjengelig og kan tilpasses. Ettersom fokuset

i prosjektet ikke var på selve designet, valgte vi Material UI slik at komponentene kan endres

av oppdragsgiver etter eget ønske og behov. Fordelen med å bruke slike verktøy og

komponenter er at de er bygget for å følge designprinsipper og støtte for universell utforming.

Verktøy

Material UI

Material UI (MUI) er et gratis og åpent bibliotek med React

UI-komponenter som implementerer Googles Material Design. Noen

fordeler med Material UI er at det følger et konsistent og moderne

designsystem med støtte for flere temaer og tilpasninger (Mui, 2023).
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Recharts for

React

Recharts for React er et bibliotek med React-komponenter som tilbyr et

enkelt og kraftig API for å opprette interaktive diagrammer og grafer, som

kan brukes til å visualisere komplekse datasett. Disse ulike grafene gjorde

det enkelt for oppdragsgiver å få en oversikt over forbruket av deres

kunder, samt churn risiko på en intuitiv måte (Recharts, 2023).

Figma

Figma er en skybasert designplattform som brukes av designere, utviklere

og samarbeidsgrupper for å opprette, dele og samarbeide om digitale

designprosjekter. Plattformen tilbyr et bredt utvalg av funksjoner og

verktøy for å hjelpe brukerne med å opprette alt fra wireframes til

komplekse interaktive prototyper. Vi ønsket å ha alle opplysninger,

standarder og retningslinjer knyttet til design på ett sted. Figma var et

produkt som ble brukt for å utvikle wireframe og poster (Figma, 2023).

Farger og kontrast
Farger er delt i de som brukes for forgrunn og bakgrunn. Her var det mest fokus på kontrast

og tilgjengelighet.

Hovedfarge Alternative farger

#720707 #8A0808 #A20A0A #BA0B0B

Hovedfarge Alternative farger

#EE0000 #FF0808 #FF2222 #FF3C3C

Alternative farger Hovedfarge

#DBC5BA #  E3D3CB #ECE1DB #F5EFEC
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Farge (bakgrunn og forgrunn) Kontrast

Eksempel på tekst 10.54:1

Eksempel på tekst 10.54:1

Fargene vi har brukt i vår applikasjon er hovedsakelig #720707 og #F5EFEC, som oppnår

kravet til kontrast. I arbeidet med undersøkelse av fargevalg oppdager gruppen at

oppdragsgiver IKKE har godkjent kontrast i noen av de elementene på nettsiden (eks.

Nettbutikk, Prøvekjøp).

OneCall farger (bakgrunn og forgrunn) Kontrast

Prøvekjøp 3.85:1

Totalpris 4.2:1

Chat med Uno 4.18:1

“Kravet til kontrast gjelder for både tekst og bilde av tekst. Liten tekst krever høyere kontrast
for å ha god lesbarhet, enn stor eller fet tekst. WCAG 2.0 stiller derfor ulike krav til
kontrastverdi for stor og liten tekst. Kravet til kontrast mellom tekst og bakgrunn er: 4.5:1 for
liten tekst 3.0:1 for stor eller fet tekst Kontrastforholdet i kravet på 4.5:1 er satt fordi dette vil
kompensere for synstapet som er vanlig når man blir eldre. Denne kontrastverdien vil gjøre
teksten lettere å lese for alle brukere, f.eks. når en er ute i skarpt sollys.” (Universell
Utforming Tilsynet, 2023)

Oppdragsgiveren er informert om at deres nettside inneholder fargevalg som ikke innfrir krav

til kontrast.

Font
På sine sider bruker OneCall en font som heter Stabil Grotesk. Denne fonten var ikke åpent

tilgjengelig og ville kostet oss 70€, så vi ble nødt til å finne en annen. DM Sans har en rekke

egenskaper som gjør den til en god skrifttype å bruke. Den er tilgjengelig i fire forskjellige

stiler: regular, italic, medium og medium italic. I tillegg er den veldig lesbar på skjermen, noe

som gjør den godt egnet for digitale plattformer som nettsider, apper og e-bøker. Skrifttypen

passer også godt for trykte materialer som aviser, magasiner og bøker.
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Font DM Sans

HTML tag <h1> <h2> <h3> <h4> <p>

Normal H1 H2 H3 H4 p

Bold H1 H2 H3 H4 p

Italic H1 H2 H3 H4 p

4.5. Maskinlæringsmodellen
4.5.1. Maskinlæringsprosessen

Maskinlæringsprosessen er en omfattende prosess som krever mye arbeid. Den består stort

sett nøyaktig av den samme syklusen med iterative segmenter som illustrert på figur 4.17

under. Selv om dette er en typisk prosess og består av mange av de samme handlingene, så

blir hver modell unikt satt sammen gjennom ulike faktorer som datatilgjengelighet, rensing,

analysering, valg av algoritme og målsetting (Saltz, 2022). Vi har forsøkt ulike tilnærminger

som blir beskrevet i dette kapittelet.
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Figur 4.17 - Maskinlæringsprosess ( Saltz, 2022)

Churn hos OneCall
OneCall har ca. 400.000 kunder i Norge (T. Felix, personlig kommunikasjon, 19.05.2023).

Ettersom vårt datasett inneholder data om ca. 25000 av kundene betyr det at vi har tilgang til

kun 7% av kundebasen. Resultatene under er dermed ikke representative for faktisk churn hos

OneCall. Vi vet ikke hva som er OneCall sin reelle churn rate. Dette for å opprettholde

konfidensialitet ovenfor oppdragsgiver og skjerme forretningshemmeligheter. Utfallet vi har

fått gjennom prosjektet gjenspeiler derfor først og fremst modellens kvalitet basert på et

utvalg av OneCall sin kundebase.

For datasettene vi har tilgang til finner vi at totalt 23.380 kunder starter medlemskap i løpet

av perioden mars - november 2022, men 17.865 kunder velger å forlate i samme periode. Det

betyr ikke at OneCall har en høy churn, men at OneCall har netto økning i antall kunder.
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Kundebasen øker med i snitt 1985 kunder pr. mnd tilsvarende 23%. I figur 4.18 kan man se et

utsnitt av dataene. Det er verdt å nevne at bare fordi noen kunder regnes som churnet i en

spesifikk måned er det ikke nødvendigvis tilfelle at de ble aktive i samme måned eller i det

hele tatt noen av månedene vi har tilgang til. Likevel, om vi ser på vårt ferdige datasett etter

rensing kommer vi frem til at vi har ca. 12% som er inaktive mot ca. 87% aktive kunder (ca.

1% er sperret).

Figur 4.18 - Oversikt over startede og avsluttede medlemskap fordelt på måned

Figur 4.19 - Kundefordeling på status. Grønn er
aktive, rød er inaktive, sort er sperret

OneCall hadde allerede laget en ml-modell basert på Random Forest som skulle predikere

churn, men som var lite brukt innad i selskapet. Grunnen til det er at den var mangelfull og

slo kun ut på feil overforbruk (B. Hermansen, personlig kommunikasjon, 06.03.2023). Litt

nærmere forklart: En kunde i Estland nær grensen til Russland fikk en utenfor EU-tilkobling

som økte regningen betydelig, og det var fare for at kunden ville slutte å bruke tjenesten. Vi

fikk ikke mer innsikt i hvordan denne prediksjonen var utformet eller anvendt, annet enn at
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den ga gjennomsnittlig 12-14% churn-prosent på kunder. Som vi nevnte kort i kapittel 2.

Teori om churn og maskinlæring, hadde oppdragsgiver en rekke spørsmål rundt databruk, pris

og “value loads” som de gjerne ønsket mer klarhet i. De ønsket også innsikt i hvordan de

ulike pakkene blir brukt, hvor mye data noen bruker av tilgjengelig data og om andelen av

forbruk har innvirkning på churn. Oppdragsgiver var især interessert i å finne kandidater og

det optimale punktet som hjalp dem å bestemme om det skulle gjennomføres oppsalg eller

nedsalg basert på kundens forbruk og behov. Men vi ble enige om at det som skulle være vårt

fokus var å se først på churn-risiko, og deretter databruk opp mot churn.

Beskrivelse av datasettene
Oppdragsgiver bearbeidet to datasett til oss som ble lastet opp til Ubuntu-serveren der vi

kunne aksessere dataen via MySQL. Den ene inneholdt kunde-attributter (stud_subscribers),

den andre inneholdt forbrukstransaksjoner (stud_cdr). Datasettet som beskrev kunder og

deres abonnementstyper hadde 13 features og 28.895 rader.

Beskrivelse av stud_subscribers

SUBSCRIBERID er en åttesifret ID som var unik for hver kunde (Primærnøkkel).

PRIS viser hvor mye hver kunde betalte for abonnementet.

SUBSCRIPTIONTYPE

SUBSCRIPTIONDESC

var en numerisk verdi for abonnementstype.

var tekstforklaring på abonnementstypen.

STATUS

STATUSDESC

var en numerisk verdi for kundens abonnementstatus.

var tekstforklaring på kundens status.

OPERATORPRICEPLAN viste hvordan betalingen var gjort.

BUCKET_MB viste hvor mye data pakkeløsningen inneholdt.

USAGEMB var en kategori laget av OneCall intendert for vår bruk.

FAMILYSERVICE viser om kunden har et abonnement omfattet av Familieabonnement.

AGE viste kundens alder.

STARTDATE viste når kunden startet sitt abonnement.

ENDDATE viste når kunden valgte å avslutte abonnementet sitt.
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Datasettet som viste kunders CDR hadde 7 features og inneholdt 14.648.566 rader.

Beskrivelse av stud_cdr

SUBSCRIBERID er en åttesifret ID som var unik for hver kunde (ikke Primærnøkkel).

CHARGE viste enten antall (f.eks. SMS) eller sekunder(f.eks. ringeminutter).

VOLUME viste størrelsen på bruken i byte.

RATEZONE viste det geografiske området hvor bruken foregikk.

RATEPRODUCT viste hvilken type handling som var gjort, f.eks. samtale ut, samtale inn, sende

SMS, motta SMS eller nettsurfing.

INCOMEPERIOD forteller hvilken måned cdr-handlingen skjedde.

CLEARINGDATE er dato og tidspunkt for oppstarten av bruksdata-transaksjonen.

Vi vil nevne at dataene vi fikk utdelt i CDR gjaldt for perioden 1.juni-13.november 2022. Det

var noe skjev fordeling hvor transaksjoner for august, september og oktober viste 84% av

datasettet, mens juni og juli hadde under 0,5% av datasettet. November var ikke komplett da

forbruket sluttet midt i, men teller likevel 15% av total data.

Figur 4.20 - CDR fordelt på måned,

antall og hvor stor prosentandel av

datasettet transaksjonene utgjør.

Maskinlæringsalgoritme Logistic Regression
Vi fikk ekte data med innsikt om kunder som hadde churnet og kunder som var aktive. Dette

skulle vi bruke for å trene en modell som skulle forutsi hvor stor sannsynlighet det var for at

en gitt aktiv kunde kom til å churne i fremtiden. Dette er egentlig et regresjonsproblem30.

Men gjennomgående i forskningsartiklene vi skrev om i kapittel 2. Teori om churn og

30 Omtales mer i gjennomgang av Random Forest Regression i den endelig versjonen.
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maskinlæring anvendes hovedsakelig klassifiseringalgoritmer. Vi valgte derfor å starte med

en typisk algoritme for en slik problemstilling som kunne gi oss en basis å jobbe videre med.

Basert på dette valgte vi å anvende maskinlæringsalgoritmen Logistic Regression, som vi

hadde kjennskap til fra tidligere.

Logistic Regression er en populær maskinlæringsmodell som ligger innenfor den delen av

maskinlæring som kalles Supervised (javatpoint, u.å.). Supervised maskinlæring krever

treningsdata som inneholder både input og de forventede output-verdiene. I supervised læring

er målet å lære modellen å gjøre prediksjoner på nye, ukjente data basert på mønstrene den

har lært fra treningsdataene. Innenfor Supervised har man mulighet for både Klassifisering og

Regression. Ved klassifisering er målet å gruppere output i ulike klasser, i regression er målet

å estimere eller forutsi kontinuerlige numeriske verdier som output. Tross bruken av

“regression” som brukes ved kontinuerlige verdi-prediksjoner er logistic

regression-algoritmen som oftest brukt til å forutsi binære utfall, eksempelvis churn (Aktiv

v.s. Kansellert). Det er en modell som kan gi en baseline for et godt resultat veldig raskt i

tilfeller hvor man har tilgang på mye data. Blant enkelte som forsker på churn-analyse, ble

logistic regression nevnt som noe man hadde brukt, men ikke som den som gav det beste

resultat (Berkeley School of Information, 2017).

Versjon 1
En utfordring var at vi hadde begrenset kjennskap til maskinlæring. Vi spurte oppdragsgiver

om hjelp og innsikt i deres implementerte maskinlæring, men de oppfordret oss til å

eksperimentere på egen hånd. Vår basiskunnskap i maskinlæring var fra et introduksjonsfag

til kunstig intelligens som lærte oss det overordnede (DAVE3625 Introduksjon til Kunstig

Intelligens). For tips om fremgangsmåte ble vi henvist denne artikkelen skrevet av Felix

Frohböse (2020) kalt Machine Learning Case Study: Telco Customer Churn Prediction | by

Felix Frohböse | Towards Data Science. Videre forsøkte vi å finne andre løsningsmetoder,

men samtlige var lite anvendelige ettersom de viste til features vi ikke hadde til disposisjon.

Tanken bak første versjon var å samle så mye data som mulig fra begge tabeller. Vi gjorde

grunnleggende bearbeiding av dataene. Dette gjorde vi ved å gjennomføre diverse endringer

som forenklinger, legge til features og endre formater på datatypene.
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Figur 4.21. - Versjon 1 (renset)

Versjon 1 gav oss innsikt i tabellene og hvordan vi skulle utnytte de bedre for de neste

iterasjonene. Her ble det oppdaget og utformet taktikk som ble videreført til vår endelige

bearbeiding. Eksempelvis vil maskinlæringsmodeller helst operere med tall og datatyper som

int, float og double. Vi skjønte at vi måtte bearbeide tekstfeatures av typen object

og string om til tallfeatures. Mye tid ble satt av til å jobbe med denne omformateringen.

Vi lærte også at datasettet om CDR kunne kraftig reduseres ved å samle all databruken fra

enkelttransaksjoner i rader, og flytte de til features som samlet bruken i volum per måned.

Figur 4.22 - Utsnitt av CDR tabell
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Figur 4.23 - Utsnitt av tabell for Versjon 2

Datarensing er en av de viktigste oppgavene man kan gjøre for å få et godt resultat. Mye tid

ble her brukt på null-verdier da det ble ansett som det mest presserende. Et element som

skapte usikkerhet var spørsmålet vedrørende null-verdier og svært lave aldre. Ved

undersøkelse av age-features ble det oppdaget at to av abonnentene var under 6 år (dvs. 0 og

1 år gamle), og at det også fantes null-verdier på alder. Ved plotting av churn basert på alder

virket det som om alderen kunne bidra til å vippe beslutningen for modellen. Eksempelvis

viste det seg at det ble mest kunder i aldersspennet 18-44 (se figur 4.24). På figuren virker det

som at trenden for churn følger trenden for antall kunder i samme aldersgruppe. Ser vi

nærmere på figuren ser vi at det er små, men potensielt utslagsgivende forskjeller. De som har

churnet når en topp ved 27 år og får et fall ved 31 år. De aktive når sin topp ved 33 og har sitt

fall ved 28. Det ble også ansett at alder ikke burde settes til snitt eller median fordi det kunne

være en utslagsgivende faktor for churn. Vi droppet derfor radene hvor kundene hadde “null”

i alder og var under 4 år. Det var høyst usannsynlig at det forbruket vi så hos de som var 0 og

1 år gamle var reelt.

Figur 4.24. - Diagram viser aldersfordelingen blant aktive (lyseblå) og kansellerte (mørkeblå) kunder.
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Det ble også valgt å fjerne alle kundene med status ‘Sperret’. Det var usikkert om disse

kundene ønsket å være kunder, men manglet betalingsevne eller om de ikke ønsket å være

kunder og unnlot å betale til de ble sperret. Det var heller ikke interesse for at modellen skulle

predikere om noen ville bli ‘Sperret’, kun om sannsynligheten for at aktive abonnenter ville

churne. For at modellen skulle bli best mulig trent på å predikere churn-risiko ble de som

hadde status ‘Sperret’ ansett som potensielt forstyrrende og droppet.

En større utfordring gjaldt ‘null’-verdier i ENDDATE. ENDDATE kunne ikke være ‘null’,

men var satt til ‘null’ når kundene ikke hadde avsluttet kundeforholdet og var aktive. Kunder

som hadde avsluttet kundeforholdet hadde derimot et tidsstempel i ENDDATE. Det ble

forsøkt med å endre ‘null’-verdiene slik at de sto til dagens dato, og altså ville bli regnet som

mer langvarige kunder, men det ville gitt upresise beregninger. For oppdragsgiver som har

oppdatert data kunne man få en feature med korrekt varighet på kundeforhold, men for oss

som ikke hadde tilgjengelighet på kunders status ville dette gi inkorrekt varighet på

kundeforhold. Vi kan ikke si noe sikkert om lengden på kundeforholdene, men vi antar at

dette kunne vært en betydelig faktor for å gjøre modellen mer presis.

Datasettet (som vist på figur 4.21) ble brukt som utgangspunkt til å trene datasettet på

maskinlæringsalgoritmene Logistic Regression og Keras Neural Network. Begge ble testet

for Accuracy og begge oppnådde en score på 82% (se figur 4.25 og 4.26). Selv om dette ikke

var et dårlig resultat, forsto vi at datasettet inneholdt masse feil som måtte endres mer for å

kunne gi noe meningsfull output.

Figur - 4.25 LogisticRegression (t.v.), Keras Neural Network (t.h.)

Versjon 2
For denne versjonen ble dataen utvalgt med tanke på å se nærmere på forbruk og generelt

bruksmønster, som man ser i figur 4.23. Det klokeste var å se på hver kundes totale forbruk

fordelt på hver måned og linke det opp mot SUBSCRIBERID. På denne måten ville vi samle

alle CDR-dataene slik at hver rad inneholdt databruken til kun en kunde. Dette reduserte
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datasettet fra 14 millioner rader til 25.368 rader og gjorde det mer håndterbart for modellen å

tolke. Vi la også til noen features fra kunde-tabellen. Ferdigopprettet tabell før rensing ser

man på figur 4.26. Å utføre bearbeiding av features ble fra dette punkt og for senere versjoner

utført direkte i MySQL fremfor i Jupyter Notebook. Det var den letteste måten å synkronisere

resultater fra maskinlæring med vår applikasjon på det tidspunktet, ettersom de samme

input-verdiene måtte sendes inn. En annen løsning hadde vært å bearbeide mer i Python slik

at man kunne lettere filtrere rådata og benytte flere datakilder med samme modell.

Eksempelvis hvis dette skulle brukes på live og kontinuerlig data hadde det vært mer

fordelaktig for oppdragsgiver med så mye databehandling i Python/Pandas som mulig.

Det mest optimale oppsettet hadde vært om databehandlingen i Notebook hadde vært lik i

form som databehandlingen på Flask serveren. Da hadde vi kunnet gjort samme prosessering

med Pandas uten å måtte endre databasestrukturen. I neste fase av en videre prosess ville

dette vært et fokusområde.

Figur 4.26 - Versjon 2 av

maskinlæring-datasett (ubearbeidet)

Ettersom datasettet baserte seg på tabellen som inneholdt cdr, oppdaget vi at den ikke

inkluderte alle kundene vi hadde i kunde-tabellen. 3527 kunder som ikke hadde dataforbruk

var ikke interessante å se på siden vi skulle trene en modell som så på forbruk og de ble

droppet. Versjon 2 ble også testet med Logistic Regression, som ga en Accuracy-Score på

90%, men evalueringen av modellen gjorde betydelig dårligere (figur 4.28).
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Figur 4.28 - Score for Accuracy, Precision, Recall og

F1(logistic regression) for versjon 2 av

maskinlæring-datasett

Vi har brukt Accuracy, Precision31, Recall32 og F133 for å evaluere vår maskinlæringsmodell

(Nighania, 2019). Disse evalueringsresultatene brukes på binære klassifiseringsproblem for å

sjekke maskinlæringmodellers kvalitet. Resultatene viser at modellen gjorde det bedre enn

vår forrige, men fortsatt ikke var god nok. Om et firma f.eks. har en churn på 20% gjør

firmaet det veldig dårlig. En prediksjon om at ingen kunder churner vil da tilsi at man har en

accuracy på 80%. Den er ikke dårlig, men oppdager ikke falske negativer. En mer ideell

modell for maskinlæring i forbindelse med churn er derfor høy precision og en god recall

(Berkeley School of Information, 2017). Dette er ikke tilfelle for evalueringen av daværende

modell.

Likevel valgte vi å ha med denne modellen i vår applikasjon for å kunne sammenligne

forskjellene med flere modeller. Vi anvendte metoden “predict_proba” for å forutsi

sannsynligheten for churn. Dette er tallet som er synlig i vår applikasjon. “Predict_proba”

forutsier egentlig ikke sannsynlighet, men faktisk modellens sikkerhet på at den har predikert

riktig. Vi lot den stå ettersom “predict_proba” fortalte hvilket binære utfall som er gitt

avhengig av om tallet var under eller over 50%. Vi tenkte at i samsvar med en bedre

prediksjonsmodell kan dette være en ekstra beslutningsfaktor; høy churn på begge modellene

øker sannsynligheten for at en aktiv kunde er i risikosonen for å churne.

Maskinlæringsalgoritme: Random Forest Regression
Gjennom testing av dette datasett med flere forskjellige maskinlæringsalgoritmer kom vi kom

frem til at den algoritmen som ga best evaluering for vårt formål var Random Forest

Regression. Denne algoritmen er innenfor det emnet av maskinlæring som kalles Ensemble

methods. Dette er algoritmer hvor flere individuelle modeller kombineres for å oppnå bedre

33 F1-score beregnes som harmonisk gjennomsnitt av presisjon og recall, og uttrykkes som følger: F1-score = 2
* (precision * recall) / (precision + recall)

32 Recall kan uttrykkes som antall sanne positive (True Positives, TP) delt på summen av antall sanne positive og
antall falske negative (False Negatives, FN).

31 Presisjon kan uttrykkes som antall sanne positive (True Positives, TP) delt på summen av antall sanne positive
og antall falske positive (False Positives, FP).
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prediksjoner eller beslutninger enn hva hver enkelt modell kan oppnå alene (Brownlee,

2021). Bagging34-metoder bygger flere base-modeller på forskjellige tilfeldig utvalgte

undergrupper av treningsdataene. En kjent bagging-metode er Random Forest, som

kombinerer en mengde avgjørelsestrær for å gjøre prediksjoner (ibid). Den blir også regnet

for å være god på churn-prediction. Ensemblemetoder kan gi flere fordeler, inkludert økt

prediksjonsnøyaktighet, bedre generell ytelse, reduksjon av overtilpasning (overfitting) og

økt robusthet mot støy i dataene. Dette gjør den spesielt egnet til vårt datasett fordi økt. Dette

er en noe utradisjonell tilnærming, da det som nevnt er vanligere å se på churn som et

klassifiseringsproblem. For vår del derimot ønsket vi å se på risikofaktorer som hadde

påvirkning på churn. Vi vil heller dele opp kundene i risikosoner og oppdage nyanser i

forbruket. Denne problemstillingen mener vi er nærmere knyttet opp mot regresjon. Vi vil

ikke finne ut om en kunde forlater selskapet eller ikke, men heller se en prosent over hvor

utsatt en kunde er. Dette gjenspeiler også virkeligheten ved at årsaker til at en kunde forlater

et selskap er komplekse og uklare.

Andrew Ng underbygger en av våre teorier, han mener at selv om datarensing er sentralt, er

det likevel undervurdert i arbeidet for å oppnå de beste resultatene (DeepLearningAI, 2021).

Han mener at hvis man står fast og ikke får et bedre resultat, så ligger nøkkelen i

datarensingen. Denne tankegangen er interessant fordi han mener modellen alltid kan bli

bedre, selv om det virker som modellen har nådd sin topp. Med tanke på vår modell er det

interessant å se på hvilke muligheter dette hadde gitt oss og gav oss ettersom modellen ble

bedre og bedre for hver iterasjon. Vi kunne eksempelvis sett nærmere på skjulte outliers som

ikke burde være representative for den alminnelige bruker. Av alle kundene tegnet 6381

aktive kunder sitt abonnement før 01.06.2022 (når CDR-datasettet begynner). Per nå er disse

kundene inkludert i treningen av maskinlæringsmodellen selv om deres fulle aktive periode

ikke stemmer overens. Det motsatte tilfellet inntreffer også, hvor kunder begynner sitt

abonnement sent i perioden vi har CDR for og ble dermed registrert med inaktiv databruk

selv om de da ikke var kunde hele perioden. Denne skjeve fordelingen har vi ikke funnet en

god løsning på. Likevel mener vi at det kan være mulig å komme frem til en bedre løsning.

34 Bootstrap Aggregation
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4.5.2. Den endelige versjonen

For vår endelige versjon av modellen var planen å inkludere så mange features som mulig i

håp om at modellen ville ha flere tall å se på og dermed kunne gjøre mer korrekte

prediksjoner. Videreutviklet fra versjon 2 tok denne versjonen med antall av samtlige ulike

typer transaksjoner en kunde kunne ha fordelt på hver måned. For eksempel SMS, samtaler,

bruk i og utenfor Norge, m.m. I tillegg ble det også opprettet features for Churn og

aldersgrupper. Totalt ga dette oss hele 79 features. Det vi kom frem til var at enkelte typer

features som for eksempel samtale og SMS tilsynelatende ikke hadde stor betydning for

churn-risikoen, men de var likevel viktig å inkludere i datasettet fordi det gjorde modellen

mer presis. En teori på dette kan være at det oppstår en form for informasjonssynergi. Det kan

bidra til at modellen kan bli bedre på å fange opp komplekse mønstre når tilsynelatende

uviktig data blir tatt med i beregningen. De fungerer som vektorer på en likevekt og kan gjøre

utslag den ene veien eller den andre.

Figur 4.29 - Plot som viser betydningen av features (bilde med bedre kvalitet i Appendiks)

Vi kunne rangere features i datasettet som hadde innvirkning på å bestemme kundens status.

Det var stor spredning, men en ting var åpenbart. Forbruk som fant sted i de første månedene

(Juni, Juli, August) ville øke sannsynligheten for churn, mens forbruk som fant sted i de siste

månedene (September, Oktober, November) minket sannsynligheten for churn. Features som

inneholdt data om forbruk i november viste seg også å ha en betydelig innvirkning på

modellen. Dette er likevel en måned hvor vi har ufullstendig data; kun frem til 13. november.

Vi vurderte å droppe denne måneden nettopp fordi den ikke viser en hel måneds-forbruk og

derfor kanskje ikke er representativ, men den er beholdt.
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Figur 4.29 - Versjon 3 av maskinlæring-datasett

Evalueringen av Random Forest Regression-modellen bruker ikke Accuracy, Precision,

Recall og F1, ettersom den ikke predikerer faktiske klassifiserte utfall. For regresjon må man

derfor anvende f.eks. Mean Absolute Error35, Mean Squared Error36, Root Mean Squared

Error37 og R-Squared38. Våre verdier ble henholdsvis 0.06, 0.02, 0.15 og 0.78(se figur 4.30).

38 R-Squared er en evalueringsmetrikk som måler hvor godt en regresjonsmodell passer til dataene. Det
representerer andelen av variasjonen i målvariabelen som kan forklares av modellen

37 RMSE er en evalueringsmetrikk som er kvadratroten av MSE. Det gir et mål på gjennomsnittlig kvadratrot
avvik mellom prediksjonene og de faktiske verdiene.

36 MSE er en evalueringsmetrikk som beregner gjennomsnittet av kvadratet av differansen mellom
prediksjonene og de faktiske verdiene. MSE gir et mål på gjennomsnittlig kvadratisk avvik mellom
prediksjonene og de faktiske verdiene.

35 MAE er en evalueringsmetrikk som måler gjennomsnittlig absolutt differanse mellom prediksjonene og de
faktiske verdiene. MAE gir et mål på gjennomsnittlig avvik i størrelse mellom prediksjonene og de faktiske
verdiene.
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De tre første skal være så lave som mulig, mens den siste skal i utgangspunktet være så høy

som mulig.

Figur 4.30 - Evaluering av modellen

En annen evaluering er det som kalles for Cross-Validated R-squared Scores. Da får man

f.eks. fem forskjellige R-squared scores som ideelt sett skal være høye og jevne. Hvis man får

høyt sprik i scores betyr det gjerne at modellen er ujevn.

Figur 4.31 - Resultat av Cross-Validated R-squared

Dette ga oss gode nok resultater og spredning, men det var fortsatt sterk overvekt mot at de

aller fleste kunder fikk en churn risiko på under 5%. Det gledet dog at det var en håndfull

kunder som spredde seg jevnt over helt opp mot 90-99.99%. Vi undersøkte og sammenlignet

de samme kundene og så på fordelingen opp mot oppdaterte kundedata fra oppdragsgiver (se

figur 4.32).

Figur 4.32 - Sammenligning med med dagens kundeinfo fra oppdragsgiver

Resultatene vises som forventet. Kunder som allerede har avsluttet kundeforholdet har

konsekvent en markant høyere risiko for kundefrafall. Dette avtar mer jo mer churn-risikoen
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minker, men andelen kunder som har churnet representerer en overvekt blant alle som får

churn-risiko over 30%. Problematisk er dog at der det burde være en tydelig overvekt blant

aktive medlemmer (0% - 10%), finner vi at omkring 25% faktisk har churnet. Modellen har

altså utfordringer med falske negativer. Det er med andre ord fortsatt rom for forbedring av

modellen, men vi er positivt innstilt til resultatet. En imperfekt modell kan forklares med at

vårt datasett ikke fullt dekker seks måneder og hovedsakelig kun tar utgangspunkt i

forbruksmønster.

Flask
Flask-applikasjonen brukes for å koble maskinlæringsmodellen til resten av applikasjonen.

Flask ble først utviklet i PyCharm som en separat tjeneste. Etter en stund ville vi ha alle

delene av prosjektet under samme mappe og i samme repository, så det var enkelt å starte det

samtidig. Dette fungerte, men det innebar en del konfigurering med Python Interpreters39 for

IntelliJ og det fungerte ikke for alle gruppemedlemmene. Det ble bestemt å benytte seg av

Ubuntu-serveren for å hoste Flask-applikasjonen så den kunne kjøre konstant i bakgrunnen.

Dette også med tanke på at det skulle være enkelt å starte opp når vi skulle avlevere

prosjektet til oppdragsgiver og sensor.

Figur 4.33 - Illustrasjon av applikasjons-flyt med Flask

39 Python Interpreter tolker og utfører Python-kode linje for linje.
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Figur 4.34 - Bakgrunnskjøring av Flask-applikasjon på Ubuntu server

Random Forest modellen ble trent på 75 features med data. Endepunktet vist under velger ut de

aktuelle, omformer dataen til en flat struktur, mater modellen med dataen, regner ut en prosent og

returnerer resultatet til Spring Boot.

Figur 4.35 - Endpoint for å gi en prediksjon for en subscriber

4.6. Sikkerhet

Sikkerhet utgjorde en mindre del av løsningen, da det ikke var vektlagt en omfattende

sikkerhet fra oppdragsgiverens side. Dette fordi oppdragsgivers systemer allerede var

beskyttet av komplekse og solide sikkerhetsmekanismer. Av den grunn brukte vi ikke mye

ressurser på å implementere omfattende sikkerhet rundt applikasjonen. Men for å gjøre vår
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oppgave mer komplett og for å vise at vi tok høyde for sikkerhet, implementerte vi en

grunnleggende logg-inn funksjonalitet. Vi brukte Spring sin innebygde Basic Authentication.

Denne mekanismen sikrer brukergrensesnittet og endepunktene til backend med krav om

brukernavn og passord. Vi definerte en ‘in memory’ sikkerhetskonfigurering som inneholdt

brukernavn og passord. Dette krypteres før det sendes over nettverket fra frontend til

backend. Det ble lagret en brukerlegitimasjon i LocalStorage40 eller SessionStorage41 som ble

brukt for å få tilgang til andre endepunkter i systemet. Ved utlogging blir disse

legitimeringene fjernet.

Den store fordelen med Basic Authentication er at det er enkelt å sette opp. Dessverre har den

også den ulempen at brukernavn og passord ligger lagret i selve kildekoden. En sikrere

tilnærming er f.eks. å lagre hash-verdien av passordet separat i en database, men for vår

demonstrasjon var dette akseptabelt.

Alternativt kunne vi brukt JSON Web Token (JWT), som er en mer komplett, sikker, og

omfattende sikkerhetsmekanisme. JWT fungerer ved at det blir generert en token som

autentiseres og signeres med en privat hemmelig nøkkel eller et offentlig/privat nøkkelpar, og

godkjent token ville gitt brukeren videre tilgang.

4.7. Testing

Testing utgjør en stor del av utviklingen. Dermed er det også viktig at man planlegger, utfører

og rapporterer testingen på en strukturert, gjennomtenkt og systematisk måte. Dette er på

grunn av at eventuelle feil bør oppdages både tidlig og fortløpende, slik at de kan rettes så

tidlig som mulig. I tillegg er det viktig at man rapporterer riktig, som gjør det lettere å spore

tilbake til der feilen ligger og se om den har blitt rettet. I vårt prosjekt har vi i utgangspunkt

vurdert å basere oss på Test Driven Development (TDD) som er en utviklingsmetode som har

stor fokus på testing og utviklingen starter med bygging av tester. Men på grunn av lite

kjennskap til denne tilnærmingen, udefinerte kravspesifikasjoner i startfasen, og i tillegg til et

komplekst datasett har det vært utfordrende for oss å bruke TDD (IBM, u.å.). Derfor har vi

kjørt testingen parallelt med utviklingen på slutten av hver sprint, og i tillegg ved slutten av

hele utviklingen. De ulike test-metodene vi har brukt er enhetstesting, integrasjonstesting og

41 Funksjon i nettleseren som lar nettsider midlertidig lagre data under brukersesjoner.
40 Funksjon i nettleseren som lar nettsider lagre og hente data på brukerens enhet.
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til slutt brukertesting som også har fungert som akseptansetesting for oppdragsgiver. Disse

testmetodene er hierarkisk bygget opp med ulike nivåer (figur 4.36 - Gupta, u.å.) for å teste så

mye som mulig og mot så mange aspekter ved systemet som mulig over flere faser (Gupta,

u.å.). Testene kan avdekke ulike type feil og øke dekningsgraden for testing av hele

applikasjonen.

Figur 4.36 - Test hierarkiet

Vi har som nevnt tidligere utført testingen parallelt med utviklingen, og har dermed ikke

planlagt eller strukturert det på en detaljert måte, ved for eksempel bruk av et

test-management verktøy. Dette er noe vi kunne tenkt oss å implementere hvis vi hadde hatt

mer tid til rådighet. Testverktøyene hadde økt effektiviteten i utviklingen, og med bedre

strukturert testing kunne vi forbedret kvaliteten til produktet vi leverte.

4.7.1. Enhetstest

Det enhetstestingen gjør er å teste at individuelle enheter eller komponenter fungerer som

forventet. Den bidrar til at vi som skriver koden kan få bedre forståelse av hvordan kodebiten

fungerer (javapoint, u.å.). Denne typen test kan avdekke feil tidlig i utviklingen fordi det

gjerne er det første som testes i utviklingsfasen. Det er ofte programmerere som lager

enhetstestene fordi de er nærmest selve koden. I større firmaer er det egne testfolk som tar

seg av de andre testene i hierarkiet. Enhetstester er gjerne knyttet opp mot funksjonelle krav,

da de tester disse funksjonene som f.eks. handler om validering, input og output-metodekall

som sendes til frontend og brukergrensesnittet. Spring Boot har innebygd støtte for

enhetstesting som vi benyttet oss av. Til å utføre enhetstester brukte vi de innebygde
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bibliotekene som JUnit og Mockito. Disse bibliotekene gir støtte for å mocke42 de ulike

klassene og metodene slik at man lage egne testklasser som simulerer de ekte klassene. Disse

klassene og metodene er isolerte og skal ikke påvirke resten av applikasjonen, men kun

brukes til å teste at de enkelte metodene fungerer etter sin hensikt.

Figur 4.37 - Enhetstesting av xx-klasse og dens metoder

I figur 4.37 kan du se en oversikt på resultatene fra en typisk enhetstest. Etter at testene har

blitt kjørt passerer alle metodene i klassen testen og fått grønn sjekk-markør. Det viser at

forventet utfall ble det samme som det faktiske utfallet. Mot siste halvdel av prosjektet ble det

en del flere metoder og komponenter å teste og vi rakk dessverre ikke å få godkjent på alle

før innlevering. På figur ser man at selv om testene under PredictionServiceTest har fått

grønn sjekkmarkør er ikke disse metodene dekket 100%.

42 Kopi eller klone av den originale klassen for å simulere den til bruk i testing.
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Vi lagde også en testmanuskrift for enhetstestingen (Appendiks 8), noe som er lurt å ha for å

sjekke at man dekker så mange metoder og komponenter som mulig. Det var en del av

planleggingsarbeidet. Et slikt dokument kan gi en god oversikt over hva som blir testet.

Dessverre rakk vi aldri å implementere resultatene, ettersom enhetstester ble opprettet

parallelt med kodingen. Hadde vi hatt bedre tid, ville vi prøvd å få alle testene grønne og med

full dekningsgrad. Noe av grunnen til at vi ikke fikk testet alle metodene var fordi

applikasjonen var i stadig utvikling og det var nye metoder som måtte testes og java-klasser

som ble endret, noe som gjorde at tidligere fungerende tester feilet etter endringene.

Noe vi også ønsket for enhetstestingen om vi hadde hatt bedre tid var å bruke et bibliotek

som heter PIT Mutation Testing (pitest, u.å.). Slike mutant-tester finner flere testtilfeller. Selv

om alle testene vi har er dekket, betyr ikke det at vi automatisk har avdekket alle feil som kan

oppstå. Fordeler med å bruke dette verktøyet er at den setter inn mutasjoner i test-koden og

hvis testen ikke klarer å “drepe” mutanten, så har man en test som ikke dekker alle utfallene.

Figur 4.38 - Utklipp fra Code Coverage43

4.7.2. Integrasjonstest

Integrasjonstest er en essensiell og viktig del av utviklingsprosessen, særlig i testfasen. I

integrasjonstest tester vi endepunkter enkeltvis og i sammenheng dersom de samspiller med

43 Dekningsgrad, hvor mye av komponentene og metodene er blitt testet.
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hverandre. Hensikten med integrasjonstest er å avdekke feil som kan befinne seg i

endepunktene. Samtidig er denne fasen nødvendig for å sikre at henting og sending av data

foregår på riktig måte. Dessuten kan man her avdekke om dataen som blir utvekslet er i riktig

format og dekker systemets behov og krav. Vi har på grunn av mangel på tid og ressurser ikke

klart å dekke alle endepunktene med integrasjonstest, men har testet de mest kritiske og

sårbare endepunktene. Ut ifra resultatene vi har fått fra integrasjonstestingen, kan vi si at

datautvekslingen mellom databasen og backend for det som er implementert foregår på en

korrekt måte. For utførelse av integrasjonstestingen har vi brukt verktøyet Postman, som er

mye anvendt i bransjen.

Figur 4.39 - Et eksempel fra en endepunkt-test i Postman

Se Appendiks 9 for hele tabellen over alle endepunktene som testes.

4.7.3. Systemtest

Under testfasen av utviklingen har vi vurdert å gjennomføre en systemtest i tillegg til

integrasjonstest. Systemtest er en viktig del av testingen som skal dekke løsningen i sin

helhet. I denne prosessen kan man avdekke feil i større grad som angår både
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brukergrensesnitt og koblingen mellom frontend og backend. For typisk gjennomføring av

systemtest ville vært å bruke verktøy som for eksempel Selenium og Jira Zephyr. Hvor

Selenium blir brukt for selve testprosessen og Jira Zephyr for

planlegging/strukturering/administrering av test-utførelsen. På grunn av at vi jevnlig testet

applikasjonen underveis og avdekket oppståtte feil og mangler fortløpende har vi gått bort fra

å utføre en systemtest, men heller rette fokus på akseptansetest.

4.7.4. Brukertesting (akseptansetest)

For å gjøre utviklingsprosessen så komplett som mulig, har vi bestemt oss for å kjøre en

avsluttende brukertest, som også fungerer som en akseptansetest. For gjennomføringen av

brukertesting har vi avtalt med oppdragsgiver å benytte 3 brukere som kommer til å anvende

applikasjonen for å utføre deler av arbeidsoppgaven sin. For selve brukertestingen har vi satt

av 45 minutter totalt, hvor hver bruker kommer til å få 15 minutter (10 minutter for å teste

applikasjonen, 5 minutter for tilbakemelding og kommentar). Fremgangsmåten er som følger:

Steg 1 Før vi setter i gang brukertesting med en bruker, vil brukeren få en generell

introduksjon over løsningen, og hva brukertestingen går ut på. I tillegg vil de bli

informert hvor mange minutter vedkommende kommer til å få, og hvilke punkter

vi vil mest ha tilbakemelding på.

Steg 2 Brukeren begynner å anvende applikasjonen uten veiledning, og prøver å finne

informasjon ved å navigere i brukergrensesnittet.

Steg 3 I løpet av testingen vil brukeren bli bedt om å utføre spesifikke oppgaver eller

scenarioer som er relevante for applikasjonens formål. Disse oppgavene kan

f.eks. være å finne informasjon og en spesifikk type data om en kunde.

Steg 4 Observatører(gruppen) noterer brukerens handlinger, problemer og utfordringer

de møter underveis, samtidig som vi noterer kommentarene som kommer fra

brukeren.

Steg 5 Etter at brukertestingen med hver av brukerne er avsluttet, vil de få et skjema

hvor det skal gis poeng fra 1 - 6 (6 er best) på noen konkrete områder. Disse

punktene er: fargebruk, brukervennlighet, tilgjengelighet og organisering.
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Steg 6 Vi kommer også til å ha en dialog på 5 minutter med brukerne for å høre deres

kommentarer og tilbakemeldinger som vil bli notert.

Hensikten med denne brukertestingen er å høre oppdragsgiver og brukernes endelige

kommentarer om løsningen, spesielt det som angår brukergrensesnittet. Et annet mål er å

finne eventuelle feil, mangler, eller forbedringspunkter som kan brukes til fremtidig

videreutvikling av applikasjonen. I tillegg er det også viktig for gruppen å vite i hvilken grad

vi har klart å dekke kravspesifikasjonene fra oppdragsgiver, og samtidig få en pekepinn på

hva som kunne forbedres eller gjøres annerledes.

Det er flere grunner til at det ikke har blitt utført noen brukertester tidligere i prosessen. Den

første er at vi har hatt jevnlige møter med oppdragsgiver hvor applikasjonen ble demonstrert

og tilbakemeldinger notert. Slik har vi prøvd å rette opp eventuelle feil som har blitt gjort.

Den andre grunnen er at maskinlæring-delen, som er den mest essensielle delen i hele

løsningen, ikke har vært ferdig utviklet som gjorde det utfordrende å gjennomføre en

brukertesting som gir nytte. Likevel så tenker vi at vi burde ha testet brukergrensesnittet

tidligere for å unngå å innføre store endringer i etterkant.

Resultater fra brukertestingen finner du i Appendiks 10.

Refleksjon etter brukertesting:

Vi gjennomførte en brukertesting helt på slutten av prosessen som en avsluttende fase.

Likevel har denne delen gitt oss enorm utbytte i form av konstruktive tilbakemeldinger til

selve løsningen, men også et solid grunnlag for mer refleksjon rundt gjennomføring av et

slikt prosjekt. Med brukertestingen ønsket vi å få en pekepinn på hvor tilfredsstilt

oppdragsgiveren ble av applikasjonen, og i tillegg fange opp forbedringspunkter som vi

reflekterer over og ser på eventuelle fremtidige muligheter.

Herunder vil vi kort oppsummere tilbakemeldingene vi har fått under og etter brukertestingen

og kategorisere de i tilsvarende fokusområder:

Fargebruk: I alle tre testrundene vi har utført, har vi kun fått positive kommentarer om

fargebruken. Dette mener vi er på grunn av at vi har nøye valgt ut fargekombinasjoner som
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også brukes på nettsidene til oppdragsgiveren som gjør at brukeren ikke føler løsningen er

helt ukjent. Dermed vil vi si at dette er et område vi har lyktes med.

Brukervennlighet: Brukervennlighet handler om hvor enkelt og intuitivt et produkt eller en

tjeneste er å bruke for brukerne. Dette har vært et område vi har forsøkt å vektlegge mer.

Applikasjonen skal være enkel å bruke, og innholdet og navigeringen skal være intuitiv og

skje på en naturlig måte. Basert på tilbakemeldingene vi har fått, så har vi dessverre ikke helt

kommet i mål. Applikasjonen mangler for eksempel tilbakeknapp et par steder der det kunne

ha vært nødvendig.

Tilgjengelighet: Tilgjengelighet går ut på at alle skal kunne anvende applikasjonen, uten

hindringer eller utfordringer. Dette gjelder også brukere med funksjonshemminger, som har

ulike utfordringer med bruk av digitale verktøy. Da vi hadde som mål å bygge en MVP, har vi

dessverre ikke hatt stort fokus på tilgjengelighet under utviklingen. Til tross for at det har blitt

lagt mindre vekt på tilgjengelighet, så har vi likevel sørget for at applikasjonen er enkel å

anvende. Det er for eksempel mulig å bruke TAB eller ENTER i siden for å navigere og

bekrefte valg.

Organisering: Under hele utvikling av frontend har vi vært opptatt av å ha en oversiktlig

struktur i applikasjonen. Dette gjorde vi ved å plassere komponentene på en ryddig måte, som

gjør det lettere å hente informasjon effektivt. Hver av våre brukere har uttrykt at de er

fornøyde med plassering av komponenter og hvor ting er plassert.

Ideelt sett burde brukertestingen inkludere brukere med behov innen et større spekter, men på

grunn av at dette er en intern applikasjon har vi nøyd oss med å teste på OneCall ansatte fra

ulike fagområder. Tilbakemeldingene vi fikk er positive. Dette skyldes mest at det ikke har

vært implementert utstrakte tilgjengelighetsfunksjoner og at brukerne ikke har noen særskilte

behov.

4.8. Brukerveiledning

I denne delen viser vi noen skjermbilder av brukergrensesnittet og muligheter en bruker har.

Det er delt i forskjellige sider:
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● Dashboard med overordnet statistikk over forbruket, og churn risiko

● Kundeinnsikt som har et søkefelt og flere visualiseringer

● Tabell med brukere fra søket

● Detaljerte opplysninger om churn per kunde

● Visualisering

Når brukeren går inn på nettsiden, er det dette de vil møte først. Denne siden har en
generell oversikt. Den viser noe statistikk og grafer.
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Vi har implementert mobile view for å gjøre applikasjonen lett tilgjengelig på mobile
enheter. I tillegg vi også implementert informasjonsbokser på en estetisk måte, som gjør
det mulig for brukere å se definisjoner på nøkkelord.

Kundeinnsikt-siden er der brukerne får flere grafer. Hovedfunksjonaliteten på denne siden
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er søkefeltet hvor brukere kan søke gjennom kundebasen etter diverse parametre.

Brukere av applikasjonen vil ha mulighet til å oppdatere churn-analysen dynamisk, samt
lagre resultatet i databasen.

Side 72 av 84



Sluttrapport - Gruppe 33 26.05.2023

Dette er søkeresultatet som vises. Det viser status, alder, datapakke og churn-prosent. Her
er det mulig å ha flere kunder per side, bla gjennom og se deres forbruk og detaljert
oversikt. Utvidet bruk knappen tar en videre til den detaljerte oversikten.
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Denne siden viser oversikt over en bruker fra databasen. Her vises det oversikt over status
og noen personlige opplysninger, samt churn risiko representert i form av prosent og
churn-indikator. Vi viser også resultatet fra Logistic Regression modellen.

Churn-indikatoren gir en beskrivelse av risiko, og generelle anbefalinger rundt dette.
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5. Avsluttende del
5.1. Oppsummering

Vi mener at vi har utført prosjektet på en tilstrekkelig måte, både i forhold til oppdragsgiver

og som et bachelorprosjekt. Vi har utviklet en løsning som fungerer etter oppdragsgiverens

bestilling og deres kravspesifikasjoner. Samtidig har vi jobbet strukturert og fordelt

arbeidsoppgaver rettferdig mellom gruppemedlemmene slik at alle fikk omtrent like mye å

gjøre og like mye læringsutbytte av prosjektarbeidet. Gruppen konkluderer med at

oppdragsgiver har fått mer innsikt i hvordan de kan implementere maskinlæring for

churn-prediction, som gir dem bedre forutsetninger for å utarbeide gode strategier for

kundelojalitet. Løsningen vår er et godt utgangspunkt for videreutvikling og kan bidra til å

sette et grunnlag for videre arbeid.

5.2. Refleksjon

Vi tror at løsningen vår fungerer såpass bra at den vil kunne ha betydning for

oppdragsgiverens forretningsstrategi og at det vil være hensiktsmessig for dem å

videreutvikle løsningen. Det var noen opplysninger som oppdragsgiver besitter som kan

spille en rolle i sammenheng med churn, men som ikke var inkludert i treningen av modellen.

Vi tror et bedre resultat blant annet vil oppnås om oppdragsgiver velger å utvide og

videreutvikle modellen vår slik at den blir trent ytterligere med ytterligere informasjon om

flere kunder over en lengre periode.

Bachelorprosjektet har fungert som en god introduksjon til arbeidslivet som utviklere. Vi har

fått et praktisk innblikk i programvareutvikling og prosessene som er involvert. Vi har måttet

sette oss inn i nye problemstillinger og lære oss nye teknologier når det var nødvendig.

Arbeidsgiver ville helst ha maskinlæring som en del av prosjektet, og ingen av oss hadde

inngående kunnskaper om dette bortsett fra et introduksjonskurs. Dette gjaldt også React, da

ingen av oss hadde brukt dette noe særlig ved oppstart. Det å kunne plukke opp ny kunnskap

og anvende tidligere erfaring med praktisk kunnskap for å se mønstre og sammenhenger er

uvurderlig i en jobb som programvareutvikler. Dette har vært en gjentagende faktor i

utviklingen av dette prosjektet. Vi vil ta med oss dette videre ut i arbeidslivet, hvor

teknologien er i stadig utvikling, og som gjør at en softwareutvikler er nødt til å stadig sette

seg inn i nye problemstillinger.
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Det var motiverende å gå løs på en problemstilling som en etablert oppdragsgiver ikke hadde

løst selv. Vi så på dette som en unik mulighet til å kunne fullføre et utviklingsprosjekt fra

bunnen av hvor vi er med på å planlegge og utforme et helt produkt. Vi hadde veldig mye

frihet i hvordan vi gjennomførte prosjektet og hvilke teknologier vi valgte. Det ga oss

fleksibilitet, men i ettertid kunne vi gjerne vært tydeligere i å avgrense hva oppdragsgiver

ønsket. Dette kjente vi på underveis i prosjektet, og spesielt etter avsluttende brukertesting av

brukergrensesnittet.

Vår MVP var en applikasjon for fremvisning av statistikk av kundebasen, og vi ville gjerne få

til en nøyaktig Churn-prediksjon av kundene med bruk av maskinlæring. Vi synes vi har nådd

dette målet, da testing av våre prediksjoner på den faktiske kundebasen fikk god evaluering

(Appendiks 11).

Som gruppe er vi fornøyd med vår egen innsats med tanke på måloppnåelsen innenfor den

gitte tidsrammen og prosjektets vanskelighetsgrad. Vi kunne laget en enda mer komplett

løsning med et mer utfyllende dashboard hadde rammene vært annerledes, men vi mener at vi

har klart å produsere en god løsning for kjerne-problemstillingen som var:

Hvordan konstruere en løsning som gir OneCall mer kundeinnsikt, spesielt med hensyn til

churn risiko?

5.3. Prospekt - videre prosess

For videre arbeid ville vi ha sett på muligheten for å integrere vår løsning inn i OneCall sitt

interne system. Dette ville dog innebære oppkobling til datakilder som inneholder

produksjonsdata, og vi måtte trolig sett nærmere på forbedring av ytelsen til vår løsning. Den

fungerer fint med 25.000 kunder, men med hele kundemassen vil ytelsen bli en utfordring. Vi

gjør en del av kalkulasjonene til visualiseringer i JavaScript i klienten. Noe av dette kunne

ved en videre prosess blitt flyttet til backend. Da måtte vi eventuelt ha satt oss inn i de

forskjellige mulighetene og sett på fordeler og ulemper de medførte.

Vi har tilrettelagt funksjoner som gjør det mulig for OneCall å kjøre prediksjoner på systemer

som har data som er i endring. Det kan lagres en oppdatert churn-prosent på alle kunder ved
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oppstart av applikasjonen. Vi har derimot hatt statiske data som det ikke har vært nødvendig å

oppdatere fortløpende. Ved en videre prosess ville vi lagt til en mer avansert databasestruktur

med flere muligheter for oppdatering, lagring og sletting.

En nærmere testing av churn-analysens nøyaktighet er en faktor vi gjerne ville jobbet mer

med. Med mer tid til rådighet ville vi også sett på å trene maskinlærings-modellen med en

større og mer komplett datamengde.

Mer grundig testing av samtlige applikasjoner er noe vi anbefaler. Vi har testet

hovedfunksjonalitet, men vil ønske en større testdekning for backend, samt implementere

tester for frontend og ML-API ved neste iterasjon.

Et bedre brukergrensesnitt hvor vi tar mer høyde for WCAG-score for universell utforming er

også anbefalt.

Tross alt har oppdragsgiver uttrykt tilfredshet med resultatet. Vi håper at prosjektet ikke bare

har vært nyttig og lærerikt for oss, men også gitt verdi for oppdragsgiveren. Det hadde morro

om noen av våre funn kunne tas med videre i deres arbeid.

Takk for oss!
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